福建省龍巖市北城中學中考數(shù)學押題卷及答案解析_第1頁
福建省龍巖市北城中學中考數(shù)學押題卷及答案解析_第2頁
福建省龍巖市北城中學中考數(shù)學押題卷及答案解析_第3頁
福建省龍巖市北城中學中考數(shù)學押題卷及答案解析_第4頁
福建省龍巖市北城中學中考數(shù)學押題卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省龍巖市北城中學中考數(shù)學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.22.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°3.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°4.九章算術是中國古代數(shù)學專著,九章算術方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設走路快的人要走

x

步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.5.如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為()A.10 B.9 C.8 D.76.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,47.某體育用品商店一天中賣出某種品牌的運動鞋15雙,其中各種尺碼的鞋的銷售量如表所示:鞋的尺碼/cm2323.52424.525銷售量/雙13362則這15雙鞋的尺碼組成的一組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別為()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,248.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°9.如圖,是由7個大小相同的小正方體堆砌而成的幾何體,若從標有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是()A.① B.② C.③ D.④10.如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.一個多邊形的內角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.12.如果關于x的方程x2+2ax﹣b2+2=0有兩個相等的實數(shù)根,且常數(shù)a與b互為倒數(shù),那么a+b=_____.13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點,D點是射線AC上的一個動點,將△ADE沿線段DE翻折,得到△A′DE,當A′D⊥AB時,則線段AD的長為_____.14.袋中裝有6個黑球和n個白球,經過若干次試驗,發(fā)現(xiàn)“若從袋中任摸出一個球,恰是黑球的概率為”,則這個袋中白球大約有_____個.15.如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點B的對應點的坐標為B'(2,0),則點A的對應點A'的坐標為___.16.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.三、解答題(共8題,共72分)17.(8分)某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?18.(8分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?19.(8分)某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據(jù)調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.根據(jù)以上信息,解答下列問題:(1)這次調查一共抽取了名學生,其中安全意識為“很強”的學生占被調查學生總數(shù)的百分比是;(2)請將條形統(tǒng)計圖補充完整;(3)該校有1800名學生,現(xiàn)要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據(jù)調查結果,估計全校需要強化安全教育的學生約有名.20.(8分)解不等式組請結合題意填空,完成本題的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為.21.(8分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)22.(10分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結果精確到0.1米,參考數(shù)據(jù)≈1.414,≈1.732)23.(12分)某公司投入研發(fā)費用80萬元(80萬元只計入第一年成本),成功研發(fā)出一種產品.公司按訂單生產(產量=銷售量),第一年該產品正式投產后,生產成本為6元/件.此產品年銷售量y(萬件)與售價x(元/件)之間滿足函數(shù)關系式y(tǒng)=﹣x+1.求這種產品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數(shù)關系式;該產品第一年的利潤為20萬元,那么該產品第一年的售價是多少?第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發(fā),使產品的生產成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產品售價不超過第一年的售價,另外受產能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.24.解不等式組,并把它的解集表示在數(shù)軸上.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:先根據(jù)折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.2、C【解析】

根據(jù)平行線的性質,可得的度數(shù),再根據(jù)以及平行線的性質,即可得出的度數(shù).【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.3、B【解析】

直接利用三角形內角和定理得出∠ABC的度數(shù),再利用翻折變換的性質得出∠BDE的度數(shù).【詳解】解:∵∠A=56°,∠C=88°,

∴∠ABC=180°-56°-88°=36°,

∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,

∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,

∴∠BDE=180°-18°-88°=74°.

故選:B.【點睛】此題主要考查了三角形內角和定理,正確掌握三角形內角和定理是解題關鍵.4、B【解析】解:設走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點睛:本題考查了一元一次方程的應用.找準等量關系,列方程是關鍵.5、D【解析】分析:先根據(jù)多邊形的內角和公式(n﹣2)?180°求出正五邊形的每一個內角的度數(shù),再延長五邊形的兩邊相交于一點,并根據(jù)四邊形的內角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.詳解:∵五邊形的內角和為(5﹣2)?180°=540°,∴正五邊形的每一個內角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經有3個五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個五邊形.故選D.點睛:本題考查了多邊形的內角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數(shù)是解題的關鍵,注意需要減去已有的3個正五邊形.6、B【解析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來的方差:;新的方差:,故選B.考點:平均數(shù);方差.7、A【解析】【分析】根據(jù)眾數(shù)和中位數(shù)的定義進行求解即可得.【詳解】這組數(shù)據(jù)中,24.5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,所以眾數(shù)為24.5,這組數(shù)據(jù)一共有15個數(shù),按從小到大排序后第8個數(shù)是24.5,所以中位數(shù)為24.5,故選A.【點睛】本題考查了眾數(shù)、中位數(shù),熟練掌握中位數(shù)、眾數(shù)的定義以及求解方法是解題的關鍵.8、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.9、A【解析】

根據(jù)題意得到原幾何體的主視圖,結合主視圖選擇.【詳解】解:原幾何體的主視圖是:.視圖中每一個閉合的線框都表示物體上的一個平面,左側的圖形只需要兩個正方體疊加即可.故取走的正方體是①.故選A.【點睛】本題考查了簡單組合體的三視圖,中等難度,作出幾何體的主視圖是解題關鍵.10、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.二、填空題(本大題共6個小題,每小題3分,共18分)11、7【解析】根據(jù)多邊形內角和公式得:(n-2).得:12、±1.【解析】

根據(jù)根的判別式求出△=0,求出a1+b1=1,根據(jù)完全平方公式求出即可.【詳解】解:∵關于x的方程x1+1ax-b1+1=0有兩個相等的實數(shù)根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常數(shù)a與b互為倒數(shù),∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案為±1.【點睛】本題考查了根的判別式和解高次方程,能得出等式a1+b1=1和ab=1是解此題的關鍵.13、或.【解析】

①延長A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【點睛】此題考查了勾股定理,三角形相似,關鍵在于做輔助線14、1【解析】試題解析:∵袋中裝有6個黑球和n個白球,

∴袋中一共有球(6+n)個,

∵從中任摸一個球,恰好是黑球的概率為,

∴,

解得:n=1.

故答案為1.15、(3,2)【解析】

根據(jù)平移的性質即可得到結論.【詳解】∵將線段AB沿x軸的正方向平移,若點B的對應點B′的坐標為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【點睛】本題考查了坐標與圖形變化-平移.解決本題的關鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.16、107°【解析】

過C作d∥a,得到a∥b∥d,構造內錯角,根據(jù)兩直線平行,內錯角相等,及平角的定義,即可得到∠1的度數(shù).【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【點睛】本題考查了平行線的性質以及正方形性質的運用,解題時注意:兩直線平行,內錯角相等.解決問題的關鍵是作輔助線構造內錯角.三、解答題(共8題,共72分)17、(1)4元/瓶.(2)銷售單價至少為1元/瓶.【解析】

(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,根據(jù)數(shù)量=總價÷單價結合第二批購進飲料的數(shù)量是第一批的3倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)由數(shù)量=總價÷單價可得出第一、二批購進飲料的數(shù)量,設銷售單價為y元/瓶,根據(jù)利潤=銷售單價×銷售數(shù)量﹣進貨總價結合獲利不少于2100元,即可得出關于y的一元一次不等式,解之取其最小值即可得出結論.【詳解】(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,依題意,得:=3×,解得:x=4,經檢驗,x=4是原方程的解,且符合題意.答:第一批飲料進貨單價是4元/瓶;(2)由(1)可知:第一批購進該種飲料450瓶,第二批購進該種飲料1350瓶.設銷售單價為y元/瓶,依題意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:銷售單價至少為1元/瓶.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關系,正確列出一元一次不等式.18、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】

(1)根據(jù)被調查的總人數(shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學生中“經常隨手丟垃圾”的學生=總人數(shù)×C情況的比值.【詳解】(1)∵被調查的總人數(shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關知識點.19、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數(shù)除以安全意識分“一般”的人數(shù)所占的百分比即可得這次調查一共抽取的學生人數(shù);用安全意識分“很強”的人數(shù)除以這次調查一共抽取的學生人數(shù)即可得安全意識“很強”的學生占被調查學生總數(shù)的百分比;(2)用這次調查一共抽取的學生人數(shù)乘以安全意識分“較強”的人數(shù)所占的百分比即可得安全意識分“較強”的人數(shù),在條形統(tǒng)計圖上畫出即可;(3)用總人數(shù)乘以安全意識為“淡薄”、“一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統(tǒng)計圖如下:(3)1800×=1人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體.20、(1)x≥;(1)x≤1;(3)答案見解析;(4)≤x≤1.【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為:≤x≤1.故答案為x≥、x≤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論