2023-2024學(xué)年吉林省敦化縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第1頁(yè)
2023-2024學(xué)年吉林省敦化縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第2頁(yè)
2023-2024學(xué)年吉林省敦化縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第3頁(yè)
2023-2024學(xué)年吉林省敦化縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第4頁(yè)
2023-2024學(xué)年吉林省敦化縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年吉林省敦化縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.的內(nèi)角的對(duì)邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.6 B.4C. D.3.已知等比數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公比()A. B. C.或 D.以上都不對(duì)4.在等差數(shù)列中,已知,則數(shù)列的前9項(xiàng)之和等于()A.9 B.18 C.36 D.525.如圖所示,墻上掛有邊長(zhǎng)為a的正方形木板,它的四個(gè)角的空白部分都是以正方形的頂點(diǎn)為圓心,半徑為的圓弧,某人向此板投鏢,假設(shè)每次都能擊中木板,且擊中木板上每個(gè)點(diǎn)的可能性都一樣,則它擊中陰影部分的概率是()A. B. C. D.與a的值有關(guān)聯(lián)6.已知向量,,則與的夾角為()A. B. C. D.7.記等差數(shù)列前項(xiàng)和,如果已知的值,我們可以求得()A.的值 B.的值 C.的值 D.的值8.已知數(shù)列滿足,,,則的值為()A.12 B.15 C.39 D.429.設(shè)是虛數(shù)單位,復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)的值為()A. B. C. D.10.某中學(xué)舉行英語(yǔ)演講比賽,如圖是七位評(píng)委為某位學(xué)生打出分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)分別為()A.84,85 B.85,84 C.84,85.2 D.86,85二、填空題:本大題共6小題,每小題5分,共30分。11.如圖1,動(dòng)點(diǎn)在以為圓心,半徑為1米的圓周上運(yùn)動(dòng),從最低點(diǎn)開始計(jì)時(shí),用時(shí)4分鐘逆時(shí)針勻速旋轉(zhuǎn)一圈后停止.設(shè)點(diǎn)的縱坐標(biāo)(米)關(guān)于時(shí)間(分)的函數(shù)為,則該函數(shù)的圖像大致為________.(請(qǐng)注明關(guān)鍵點(diǎn))12.已知函數(shù),的最大值為_____.13.已知,,則______.14.已知數(shù)列:,,,,,,,,,,,,,,,,,則__________.15.函數(shù),函數(shù),若對(duì)所有的總存在,使得成立,則實(shí)數(shù)的取值范圍是__________.16.函數(shù)的單調(diào)遞減區(qū)間為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知是遞增的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)為各項(xiàng)非零的等差數(shù)列,其前n項(xiàng)和為,已知,求數(shù)列的前n項(xiàng)和.18.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.19.設(shè)數(shù)列滿足.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn)分別為AC,BP中點(diǎn).(1)求證:EF∥平面PCD;(2)求直線DP與平面ABCD所成角的正弦值.21.的內(nèi)角、、的對(duì)邊分別為、、,且.(Ⅰ)求角;(Ⅱ)若,且邊上的中線的長(zhǎng)為,求邊的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

出現(xiàn)面積,可轉(zhuǎn)化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【點(diǎn)睛】本題很靈活,在常數(shù)4的處理問(wèn)題上有點(diǎn)巧妙,然后再借助余弦定理及正弦定理,難度較大.2、A【解析】該立方體是正方體,切掉一個(gè)三棱柱,所以體積為,故選A。點(diǎn)睛:本題考查三視圖還原,并求體積。此類題關(guān)鍵就是三視圖的還原,還原過(guò)程中,本題采取切割法處理,有圖可知,該立方體應(yīng)該是正方體進(jìn)行切割產(chǎn)生的,所以我們?cè)诋媹D的過(guò)程在,對(duì)正方體進(jìn)行切割比較即可。3、C【解析】

根據(jù)和可得,解得結(jié)果即可.【詳解】由得,所以,所以,所以,解得或故選:C.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式的基本量的運(yùn)算,屬于基礎(chǔ)題.4、B【解析】

利用等差數(shù)列的下標(biāo)性質(zhì),可得出,再由等差數(shù)列的前項(xiàng)和公式求出的值.【詳解】在等差數(shù)列中,故選:B【點(diǎn)睛】本題考查了等差數(shù)列的下標(biāo)性質(zhì)、以及等差數(shù)列的前項(xiàng)和公式,考查了數(shù)學(xué)運(yùn)算能力.5、C【解析】試題分析:本題考查幾何概型問(wèn)題,擊中陰影部分的概率為.考點(diǎn):幾何概型,圓的面積公式.6、D【解析】

利用夾角公式計(jì)算出兩個(gè)向量夾角的余弦值,進(jìn)而求得兩個(gè)向量的夾角.【詳解】設(shè)兩個(gè)向量的夾角為,則,故.故選:D.【點(diǎn)睛】本小題主要考查兩個(gè)向量夾角的計(jì)算,考查向量數(shù)量積和模的坐標(biāo)表示,屬于基礎(chǔ)題.7、C【解析】

設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由a5+a21=2a1+24d的值為已知,再利用等差數(shù)列的求和公式,即可得出結(jié)論.【詳解】設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,∵已知a5+a21的值,∴2a1+24d的值為已知,∴a1+12d的值為已知,∵∴我們可以求得S25的值.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式與求和公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.8、B【解析】

根據(jù)等差數(shù)列的定義可得數(shù)列為等差數(shù)列,求出通項(xiàng)公式即可.【詳解】由題意得所以為等差數(shù)列,,,選擇B【點(diǎn)睛】本題主要考查了判斷是否為等差數(shù)列以及等差數(shù)列通項(xiàng)的求法,屬于基礎(chǔ)題.9、A【解析】,,,故選A.10、A【解析】

剩余數(shù)據(jù)為:84.84,86,84,87,計(jì)算中位數(shù)和平均數(shù).【詳解】剩余數(shù)據(jù)為:84.84,86,84,87則中位數(shù)為:84平均數(shù)為:故答案為A【點(diǎn)睛】本題考查了中位數(shù)和平均數(shù)的計(jì)算,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意先得出,再畫圖.【詳解】解:設(shè),,,,,則當(dāng)時(shí),處于最低點(diǎn),則,,可畫圖為:故答案為:【點(diǎn)睛】本題考查了三角模型的實(shí)際應(yīng)用,關(guān)鍵是根據(jù)題意建立函數(shù)模型,屬中檔題.12、【解析】

化簡(jiǎn),再利用基本不等式以及輔助角公式求出的最大值,即可得到的最大值【詳解】由題可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值為故答案為【點(diǎn)睛】本題考查三角函數(shù)的最值問(wèn)題,涉及二倍角公式、基本不等式、輔助角公式等知識(shí)點(diǎn),屬于中檔題。13、【解析】

利用同角三角函數(shù)的基本關(guān)系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結(jié)合的范圍,求得的值.【詳解】,,,,,,故答案:.【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正切公式,二倍角的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.14、【解析】

根據(jù)數(shù)列的規(guī)律和可知的取值為,則分母為;又為分母為的項(xiàng)中的第項(xiàng),則分子為,從而得到結(jié)果.【詳解】當(dāng)時(shí),;當(dāng)時(shí),的分母為:又的分子為:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)數(shù)列的規(guī)律求解數(shù)列中的項(xiàng),關(guān)鍵是能夠根據(jù)分子的變化特點(diǎn)確定的取值.15、【解析】

分別求得f(x)、g(x)在[0,]上的值域,結(jié)合題意可得它們的值域間的包含關(guān)系,從而求得實(shí)數(shù)m的取值范圍.【詳解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),當(dāng)x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].對(duì)于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于對(duì)所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]?[1,2],故有3﹣m≤2,﹣+3≥1,解得實(shí)數(shù)m的取值范圍是[1,].故答案為.【點(diǎn)睛】本題考查兩角和與差的正弦函數(shù),著重考查三角函數(shù)的性質(zhì)的運(yùn)用,考查二倍角的余弦,解決問(wèn)題的關(guān)鍵是理解“對(duì)所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立”的含義,轉(zhuǎn)化為f(x)的值域是g(x)的子集.16、【解析】

利用二倍角降冪公式和輔助角公式可得出,然后解不等式,即可得出函數(shù)的單調(diào)遞減區(qū)間.【詳解】,解不等式,得,因此,函數(shù)的單調(diào)遞減區(qū)間為.故答案為:.【點(diǎn)睛】本題考查正弦型三角函數(shù)單調(diào)區(qū)間的求解,一般利用三角恒等變換思想將三角函數(shù)解析式化簡(jiǎn),考查計(jì)算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1){an}是遞增的等比數(shù)列,公比設(shè)為q,由等比數(shù)列的中項(xiàng)性質(zhì),結(jié)合等比數(shù)列的通項(xiàng)公式解方程可得所求;(2)運(yùn)用等差數(shù)列的求和公式和等差數(shù)列中項(xiàng)性質(zhì),求得bn=2n+1,再由數(shù)列的錯(cuò)位相減法求和,化簡(jiǎn)可得所求和.【詳解】(1)∵是遞增的等比數(shù)列,∴,,又,∴,是的兩根,∴,,∴,.(2)∵,∴由已知得,∴∴,化簡(jiǎn)可得.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)和求和,等差等比數(shù)列的通項(xiàng)通常是列方程組解首項(xiàng)及公差(比),數(shù)列求和常見的方法有:裂項(xiàng)相消和錯(cuò)位相減法,考查計(jì)算能力,屬于中等題.18、(I);(II)3,.【解析】

(I)利用降次公式和輔助角公式化簡(jiǎn)解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結(jié)合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【詳解】(I)的最小正周期.(Ⅱ),.【點(diǎn)睛】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.19、(1);(1).【解析】

(1)在中,將代得:,由兩式作商得:,問(wèn)題得解.(1)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項(xiàng)和公式及乘公比錯(cuò)位相減法分別求和即可得解.【詳解】(1)由n=1得,因?yàn)?,?dāng)n≥1時(shí),,由兩式作商得:(n>1且n∈N*),又因?yàn)榉仙鲜?,所以(n∈N*).(1)設(shè),則bn=n+n·1n,所以Sn=b1+b1+…+bn=(1+1+…+n)+設(shè)Tn=1+1·11+3·13+…+(n-1)·1n-1+n·1n,①所以1Tn=11+1·13+…(n-1)·1n-1+(n-1)·1n+n·1n+1,②①-②得:-Tn=1+11+13+…+1n-n·1n+1,所以Tn=(n-1)·1n+1+1.所以,即.【點(diǎn)睛】本題主要考查了賦值法及方程思想,還考查了分組求和法及乘公比錯(cuò)位相減法求和,考查計(jì)算能力及轉(zhuǎn)化能力,屬于中檔題.20、(1)見證明;(2)【解析】

(1)根據(jù)EF是△BDP的中位線可知EF∥DP,即可利用線線平行得出線面平行;(2)取AB中點(diǎn)O,連接PO,DO,可證明∠PDO為DP與平面ABCD所成角,在Rt△DOP中求解即可.【詳解】(1)因?yàn)镋為AC中點(diǎn),所以DB與AC交于點(diǎn)E.因?yàn)镋,F(xiàn)分別為AC,BP中點(diǎn),所以EF是△BDP的中位線,所以EF∥DP.又DP?平面PCD,EF?平面PCD,所以EF∥平面PCD.(2)取AB中點(diǎn)O,連接PO,DO∵△PAB為正三角形,∴PO⊥AB,又∵平面ABCD⊥平面PAB∴PO⊥平面ABCD,∴DP在平面ABCD內(nèi)的射影為DO,∠PDO為DP與平面ABCD所成角,在Rt△DOP中,sin∠PDO=,∴直線DP與平面ABCD所成角的正弦

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論