安陽市重點中學2024屆高一下數(shù)學期末調研試題含解析_第1頁
安陽市重點中學2024屆高一下數(shù)學期末調研試題含解析_第2頁
安陽市重點中學2024屆高一下數(shù)學期末調研試題含解析_第3頁
安陽市重點中學2024屆高一下數(shù)學期末調研試題含解析_第4頁
安陽市重點中學2024屆高一下數(shù)學期末調研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安陽市重點中學2024屆高一下數(shù)學期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.2.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.3.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.4.在等差數(shù)列{an}中,若a1+A.8 B.16 C.20 D.285.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為A. B. C. D.6.過點斜率為-3的直線的一般式方程為()A. B.C. D.7.函數(shù)的定義域為R,數(shù)列是公差為的等差數(shù)列,若,,則()A.恒為負數(shù) B.恒為正數(shù)C.當時,恒為正數(shù);當時,恒為負數(shù) D.當時,恒為負數(shù);當時,恒為正數(shù)8.下列說法錯誤的是()A.若樣本的平均數(shù)為5,標準差為1,則樣本的平均數(shù)為11,標準差為2B.身高和體重具有相關關系C.現(xiàn)有高一學生30名,高二學生40名,高三學生30名,若按分層抽樣從中抽取20名學生,則抽取高三學生6名D.兩個變量間的線性相關性越強,則相關系數(shù)的值越大9.的內角的對邊分別為,,,若的面積為,則A. B. C. D.10.若,則與夾角的余弦值為()A. B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.在行列式中,元素的代數(shù)余子式的值是________.12.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛去,甲、乙兩船相距最近的距離是_____.13.已知不等式x2-x-a>0的解集為x|x>3或14.設為三條不同的直線,為兩個不同的平面,給出下列四個判斷:①若則;②若是在內的射影,,則;③底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;④若球的表面積擴大為原來的16倍,則球的體積擴大為原來的32倍;其中正確的為___________.15.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.16.設等差數(shù)列,的前項和分別為,,若,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列{bn}的前n項和,n∈N*.(1)求數(shù)列{bn}的通項公式;(2)記,求數(shù)列{cn}的前n項和Sn;(3)在(2)的條件下,記,若對任意正整數(shù)n,不等式恒成立,求整數(shù)m的最大值.18.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為、高為的等腰三角形,側視圖是一個底邊長為、高為的等腰三角形.(1)求該幾何體的體積V;(2)求該幾何體的側面積S.19.設數(shù)列的前n項和為,已知.(Ⅰ)求通項;(Ⅱ)設,求數(shù)列的前n項和.20.已知向量=,=,=,為坐標原點.(1)若△為直角三角形,且∠為直角,求實數(shù)的值;(2)若點、、能構成三角形,求實數(shù)應滿足的條件.21.數(shù)列an,n∈N*各項均為正數(shù),其前n項和為S(1)求證數(shù)列Sn2為等差數(shù)列,并求數(shù)列(2)設bn=24Sn4-1,求數(shù)列bn的前n

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點睛】此題考查了正弦、余弦定理,熟練掌握定理,準確計算是解本題的關鍵,是中檔題2、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點:由圖象確定函數(shù)解析式.3、C【解析】

求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當且僅當時等號成立.故選:C【點睛】本小題主要考查直線和圓的位置關系,考查利用基本不等式求最小值.4、C【解析】

因為an則a1所以a5故選C.5、C【解析】選取兩支彩筆的方法有種,含有紅色彩筆的選法為種,由古典概型公式,滿足題意的概率值為.本題選擇C選項.考點:古典概型名師點睛:對于古典概型問題主要把握基本事件的種數(shù)和符合要求的事件種數(shù),基本事件的種數(shù)要注意區(qū)別是排列問題還是組合問題,看抽取時是有、無順序,本題從這5支彩筆中任取2支不同顏色的彩筆,是組合問題,當然簡單問題建議采取列舉法更直觀一些.6、A【解析】

由點和斜率求出點斜式方程,化為一般式方程即可.【詳解】解:過點斜率為的直線方程為,化為一般式方程為;故選:.【點睛】本題考查了由點以及斜率求點斜式方程的問題,屬于基礎題.7、A【解析】

由函數(shù)的解析式可得函數(shù)是奇函數(shù),且為單調遞增函數(shù),分和兩種情況討論,分別利用函數(shù)的奇偶性和單調性,即可求解,得到結論.【詳解】由題意,因為函數(shù),根據(jù)冪函數(shù)和反正切函數(shù)的性質,可得函數(shù)在為單調遞增函數(shù),且滿足,所以函數(shù)為奇函數(shù),因為數(shù)列是公差為的等差數(shù)列,且,則①當時,由,可得,所以,所以,同理可得:,所以,②當時,由,則,所以綜上可得,實數(shù)恒為負數(shù).故選:A.【點睛】本題主要考查了函數(shù)的單調性與奇偶性的應用,以及等差數(shù)列的性質的應用,其中解答中合理利用等差數(shù)列的性質和函數(shù)的性質求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.8、D【解析】

利用平均數(shù)和方差的定義,根據(jù)線性回歸的有關知識和分層抽樣原理,即可判斷出答案.【詳解】對于A:若樣本的平均數(shù)為5,標準差為1,則樣本的平均數(shù)2×5+1=11,標準差為2×1=2,故正確對于B:身高和體重具有相關關系,故正確對于C:高三學生占總人數(shù)的比例為:所以抽取20名學生中高三學生有名,故正確對于D:兩個變量間的線性相關性越強,應是相關系數(shù)的絕對值越大,故錯誤故選:D【點睛】本題考查了線性回歸的有關知識,以及平均數(shù)和方差、分層抽樣原理的應用問題,是基礎題.9、C【解析】分析:利用面積公式和余弦定理進行計算可得。詳解:由題可知所以由余弦定理所以故選C.點睛:本題主要考查解三角形,考查了三角形的面積公式和余弦定理。10、A【解析】

根據(jù)向量的夾角公式,準確運算,即可求解,得到答案.【詳解】由向量,則與夾角的余弦值為,故選A.【點睛】本題主要考查了向量的夾角公式的應用,其中解答中熟記向量的夾角公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)余子式的定義,要求的代數(shù)余子式的值,這個元素在三階行列式中的位置是第一行第二列,那么化去第一行第二列得到的代數(shù)余子式,解出即可.【詳解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代數(shù)余子式為:解這個余子式的值為,故元素的代數(shù)余子式的值是.故答案為:【點睛】考查學生會求行列式中元素的代數(shù)余子式,行列式的計算方法,屬于基礎題.12、【解析】

根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【詳解】假設經過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當小時時甲、乙兩船相距最近,最近距離為.【點睛】本題考查解三角形的實際應用,難度較易.關鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.13、6【解析】

由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點睛】本題主要考查一元二次不等式的解,意在考查學生對該知識的理解掌握水平,屬于基礎題.14、①②【解析】

對四個命題分別進行判斷即可得到結論【詳解】①若,垂足為,與確定平面,,則,,則,,則,故,故正確②若,是在內的射影,,根據(jù)三垂線定理,可得,故正確③底面是等邊三角形,側面都是有公共頂點的等腰三角形的三棱錐是正三棱錐,故不正確④若球的表面積擴大為原來的倍,則半徑擴大為原來的倍,則球的體積擴大為原來的倍,故不正確其中正確的為①②【點睛】本題主要考查了空間中直線與平面之間的位置關系、球的體積等知識點,數(shù)量掌握各知識點然后對其進行判斷,較為基礎。15、20【解析】

先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【詳解】設的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當時,取得最大值400故答案為:20【點睛】等差數(shù)列的是關于的二次函數(shù),但要注意只能取正整數(shù).16、【解析】分析:首先根據(jù)等差數(shù)列的性質得到,利用分數(shù)的性質,將項的比值轉化為和的比值,從而求得結果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關等差數(shù)列的性質的問題,將兩個等差數(shù)列的項的比值可以轉化為其和的比值,結論為,從而求得結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)bn=3n﹣2,n∈N*.(2);(3)最大值為1.【解析】

(1)利用,求得數(shù)列的通項公式.(2)利用裂項求和法求得數(shù)列的前項和.(3)由(2)求得的表達式,記不等式左邊為,利用差比較法判斷出的單調性,進而求得的最小值,由此列不等式求得的取值范圍,進而求得整數(shù)的最大值.【詳解】(1)∵數(shù)列{bn}的前n項和,n∈N*.∴①當n=1時,b1=T1=1;②當n≥2時,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;設f(n);則f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值為f(1);∵對任意正整數(shù)n,不等式恒成立,∴恒成立,即m<12;故整數(shù)m的最大值為1.【點睛】本小題主要考查已知求,考查裂項求和法,考查數(shù)列單調性的判斷方法,考查不等式恒成立問題的求解,屬于中檔題.18、(1)1;(2)40+24【解析】

由題設可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為8和6的矩形,正側面及其相對側面均為底邊長為8,高為h1的等腰三角形,左、右側面均為底邊長為6、高為h2的等腰三角形,分析出圖形之后,再利用公式求解即可.【詳解】解:由題設可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為8和6的矩形,正側面及其相對側面均為底邊長為8,高為h1的等腰三角形,左、右側面均為底邊長為6、高為h2的等腰三角形,如圖所示.(1)幾何體的體積為V?S矩形?h6×8×4=1.(2)正側面及相對側面底邊上的高為:h12.左、右側面的底邊上的高為:h24.故幾何體的側面面積為:S=2×(8×26×4)=40+24.19、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)當時,根據(jù),構造,利用,兩式相減得到,然后驗證,得到數(shù)列的通項公式;(Ⅱ)由上一問可知.根據(jù)零點分和討論去絕對值,利用分組轉化求數(shù)列的和.試題解析:(Ⅰ)因為,所以當時,,兩式相減得:當時,,因為,得到,解得,,所以數(shù)列是首項,公比為5的等比數(shù)列,則;(Ⅱ)由題意知,,易知當時,;時,所以當時,,當時,,所以,,……當時,又因為不滿足滿足上式,所以.考點:1.已知求;2.分組轉化法求和.【方法點睛】本題考查了數(shù)列求和,一般數(shù)列求和方法(1)分組轉化法,一般適用于等差數(shù)列加等比數(shù)列,(2)裂項相消法求和,,等的形式,(3)錯位相減法求和,一般適用于等差數(shù)列乘以等比數(shù)列,(4)倒序相加法求和,一般距首末兩項的和是一個常數(shù),這樣可以正著寫和和倒著寫和,兩式兩式相加除以2得到數(shù)列求和,(5)或是具有某些規(guī)律求和,(6)本題考查了等差數(shù)列絕對值求和,需討論零點后分兩段求和.20、(1);(2)【解析】

(1)利用向量的運算法則求出,,再利用向量垂直的充要條件列出方程求出m;(2)由題意得A,B,C三點不共線,則與不共線,列出關于m的不等式即可.【詳解】(1)因為=,=,=,所以,,若△ABC為直角三角形,且∠A為直角,則,∴3(2﹣m)+(1﹣m)=0,解得.(2)若點A,B,C能構成三角形,則這三點不共線,即與不共線,得3(1﹣m)≠2﹣m,∴實數(shù)時,滿足條件.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論