版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省各地2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列互斥但不對立的兩個事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”2.已知向量,,若,則的值為()A. B.1 C. D.3.在區(qū)間上任取兩個實數(shù),則滿足的概率為()A. B. C. D.4.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.5.在中,若°,°,.則=A. B. C. D.6.已知函數(shù)的部分圖象如圖,則的值為()A. B. C. D.7.在中,已知其面積為,則=()A. B. C. D.8.“”是“直線:與直線:垂直”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.設(shè),若,則數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.奇數(shù)項遞增,偶數(shù)項遞減的數(shù)列 D.偶數(shù)項遞增,奇數(shù)項遞減的數(shù)列10.在中,角的對邊分別是,若,則角的大小為()A.或 B.或 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前項和滿足,則______.12.若無窮數(shù)列的所有項都是正數(shù),且滿足,則______.13.函數(shù)的值域是________.14.已知向量,則與的夾角為______.15.設(shè)數(shù)列滿足,,且,用表示不超過的最大整數(shù),如,,則的值用表示為__________.16.方程在區(qū)間上的解為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.18.已知數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;(3)若對任意的,都有成立,求實數(shù)的取值范圍.19.在數(shù)1和100之間插入個實數(shù),使得這個數(shù)構(gòu)成遞增的等比數(shù)列,將這個數(shù)的乘積記作,再令.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),求數(shù)列的前項和.20.在平面直角坐標(biāo)系中,已知點(diǎn),,.(Ⅰ)求的坐標(biāo)及;(Ⅱ)當(dāng)實數(shù)為何值時,.21.直線的方程為.(1)若在兩坐標(biāo)軸上的截距相等,求的值;(2)若不經(jīng)過第二象限,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
從3名男生和2名女生中任選2名學(xué)生的所有結(jié)果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項A中的兩個事件為對立事件,故不正確;選項B中的兩個事件不是互斥事件,故不正確;選項C中的兩個事件不是互斥事件,故不正確;選項D中的兩個事件為互斥但不對立事件,故正確.選D.2、B【解析】
直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.3、B【解析】試題分析:因為,在區(qū)間上任取兩個實數(shù),所以區(qū)域的面積為4,其中滿足的平面區(qū)域面積為,故滿足的概率為,選B.考點(diǎn):本題主要考查幾何概型概率計算.點(diǎn)評:簡單題,幾何概型概率的計算,關(guān)鍵是認(rèn)清兩個“幾何度量”.4、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.5、A【解析】∵在△ABC中,A=45°,B=60°,a=2,∴由正弦定理得:.本題選擇A選項.6、B【解析】
根據(jù)函數(shù)的部分圖象求出、、和的值,寫出的解析式,再計算的值.【詳解】根據(jù)函數(shù),,的部分圖象知,,,,解得;由五點(diǎn)法畫圖知,,解得;,.故選.【點(diǎn)睛】本題主要考查利用三角函數(shù)的部分圖象求函數(shù)解析式以及利用兩角和的正弦公式求三角函數(shù)的值.7、C【解析】或(舍),故選C.8、A【解析】試題分析:由題意得,直線與直線垂直,則,解得或,所以“”是“直線與直線垂直”的充分不必要條件,故選A.考點(diǎn):兩條直線的位置關(guān)系及充分不必要條件的判定.9、C【解析】
根據(jù)題意,由三角函數(shù)的性質(zhì)分析可得,進(jìn)而可得函數(shù)為減函數(shù),結(jié)合函數(shù)與數(shù)列的關(guān)系分析可得答案。【詳解】根據(jù)題意,,則,指數(shù)函數(shù)為減函數(shù)即即即即,數(shù)列是奇數(shù)項遞增,偶數(shù)項遞減的數(shù)列,故選:C.【點(diǎn)睛】本題涉及數(shù)列的函數(shù)特性,利用函數(shù)單調(diào)性,通過函數(shù)的大小,反推變量的大小,是一道中檔題目。10、B【解析】
通過給定條件直接利用正弦定理分析,注意討論多解的情況.【詳解】由正弦定理可得:,,∵,∴為銳角或鈍角,∴或.故選B.【點(diǎn)睛】本題考查解三角形中正弦定理的應(yīng)用,難度較易.出現(xiàn)多解時常借助“大邊對大角,小邊對小角”來進(jìn)行取舍.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】
利用求得,進(jìn)而求得的值.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時上式也滿足,故的通項公式為,故.【點(diǎn)睛】本小題主要考查已知求,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12、【解析】
先由作差法求出數(shù)列的通項公式為,即可計算出,然后利用常用數(shù)列的極限即可計算出的值.【詳解】當(dāng)時,,可得;當(dāng)時,由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【點(diǎn)睛】本題考查利用作差法求數(shù)列通項,同時也考查了數(shù)列極限的計算,考查計算能力,屬于中等題.13、【解析】
求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因為函數(shù),當(dāng)時是單調(diào)減函數(shù)當(dāng)時,;當(dāng)時,所以在上的值域為根據(jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域為故答案為:【點(diǎn)睛】本題求一個反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識,屬于基礎(chǔ)題.14、【解析】
設(shè)與的夾角為,由條件,平方可得,由此求得的值.【詳解】設(shè)與的夾角為,,則由,平方可得,解得,∴,故答案為.【點(diǎn)睛】本題主要考查兩個向量的數(shù)量積的定義,向量的模的定義,已知三角函數(shù)值求角的大小,屬于中檔題.15、【解析】
由題設(shè)可得知該函數(shù)的最小正周期是,令,則由等差數(shù)列的定義可知數(shù)列是首項為,公差為的等差數(shù)列,即,由此可得,將以上個等式兩邊相加可得,即,所以,故,應(yīng)填答案.點(diǎn)睛:解答本題的關(guān)鍵是借助題設(shè)中提供的數(shù)列遞推關(guān)系式,先求出數(shù)列的通項公式,然后再運(yùn)用列項相消法求出,最后借助題設(shè)中提供的新信息,求出使得問題獲解.16、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點(diǎn)】二倍角公式及三角函數(shù)求值【名師點(diǎn)睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結(jié)合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.(Ⅰ)先利用倍角公式將降冪,再利用兩角和的正弦公式將化簡,使之化簡成的形式,最后利用計算函數(shù)的最小正周期;(Ⅱ)將的取值范圍代入,先求出的范圍,再數(shù)形結(jié)合得到三角函數(shù)的最小值.試題解析:(Ⅰ)∵,∴的最小正周期為.(Ⅱ)∵,∴.當(dāng),即時,取得最小值.∴在區(qū)間上的最小值為.考點(diǎn):倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值.18、(1)(2)(3)【解析】
(1)利用遞推公式求出,,遞推到當(dāng)時,,兩個式子相減,得到,進(jìn)而求出數(shù)列的通項公式;(2)運(yùn)用錯位相減法可以求出數(shù)列的前項和;(3)對任意的,都有成立,轉(zhuǎn)化為的最小值即可,利用商比的方法可以確定數(shù)列的單調(diào)性,最后求出實數(shù)的取值范圍.【詳解】(1)數(shù)列{an}中,,.可得時,,即,時,,又,兩式相減可得,化為,可得,即,綜上可得;(2),則前項和,,相減可得,化為;(3)對任意的,都有成立,即為的最小值,由可得,,可得時,遞增,當(dāng)或2時,取得最小值,則.【點(diǎn)睛】本題考查了已知遞推公式求數(shù)列通項公式,考查了數(shù)列的單調(diào)性,考查了錯位相減法,考查了數(shù)學(xué)運(yùn)算能力.19、(Ⅰ)(Ⅱ)【解析】
(1)類比等差數(shù)列求和的倒序相加法,將等比數(shù)列前n項積倒序相乘,可求,代入即可求解.(2)由(1)知,利用兩角差的正切公式,化簡,,得,再根據(jù)裂項相消法,即可求解.【詳解】(Ⅰ)由題意,構(gòu)成遞增的等比數(shù)列,其中,則①②①②,并利用等比數(shù)列性質(zhì),得(Ⅱ)由(Ⅰ)知,又所以數(shù)列的前項和為【點(diǎn)睛】(Ⅰ)類比等差數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì),推導(dǎo)等比數(shù)列前項積公式,創(chuàng)新應(yīng)用型題;(Ⅱ)由兩角差的正切公式,推導(dǎo)連續(xù)兩個自然數(shù)的正切之差,構(gòu)造新型的裂項相消的式子,創(chuàng)新應(yīng)用型題;本題屬于難題.20、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據(jù)點(diǎn),的坐標(biāo)即可求出,從而可求出;(Ⅱ)可以求出,根據(jù)即可得出,解出即可.【詳解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【點(diǎn)睛】考查根據(jù)點(diǎn)的坐標(biāo)求向量的坐標(biāo)的方法,根據(jù)向量的坐標(biāo)求向量長度的方法,以及平行向量的坐標(biāo)關(guān)系.21、(1)0或2;(2).【解析】
(1)當(dāng)過坐標(biāo)原點(diǎn)時,可求得滿足題意;當(dāng)不過坐標(biāo)原點(diǎn)時,可根據(jù)直線截距式,利用截距相等構(gòu)造方程求得結(jié)果;(2)當(dāng)時,可得直線不經(jīng)過第二象限;當(dāng)時,結(jié)合函數(shù)圖象
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度安全風(fēng)險評估責(zé)任書協(xié)議預(yù)防事故發(fā)生3篇
- 2024紙箱購銷合同書
- 2025年度電力工程車輛司機(jī)聘用協(xié)議書及安全要求3篇
- 2025年度餐飲服務(wù)業(yè)個人臨時雇傭合同范本4篇
- 2025年校企合作產(chǎn)學(xué)研合作創(chuàng)新基地建設(shè)合同3篇
- 2025年度個人合伙餐飲連鎖經(jīng)營合作協(xié)議書4篇
- 2025個人工傷賠償協(xié)議書范本5篇
- 2025年江西贛州稀土集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025年蓄水池建筑工程施工質(zhì)量保修服務(wù)合同3篇
- 2025年遼寧朝陽水務(wù)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2024電子商務(wù)平臺用戶隱私保護(hù)協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語 含答案
- 電力工程施工安全風(fēng)險評估與防控
- 醫(yī)學(xué)教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
- 智聯(lián)招聘在線測評題
- DB3418T 008-2019 宣紙潤墨性感官評判方法
- 【魔鏡洞察】2024藥食同源保健品滋補(bǔ)品行業(yè)分析報告
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題及答案
- 鋼筋桁架樓承板施工方案
- 2024年駐村第一書記工作總結(jié)干貨3篇
評論
0/150
提交評論