版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
壓軸題解讀壓軸題解讀第一步:先判定函數(shù)的增減性:一次函數(shù)、反比例函數(shù)看k,二次函數(shù)看對稱軸與區(qū)間的位置關系;二次函數(shù)求取值范圍之動軸定區(qū)間或者定軸動區(qū)間的分類方法:分對稱軸在區(qū)間的左邊、右邊、中間三種(1)若自變量x的取值范圍為全體實數(shù),如圖①,函數(shù)在頂點處時,取到最值.(3)如圖③,當x=m,y=ymin;當x=n,y=ymax(4)若m≤x≤n,,如圖④,當,y=ymin;當x=n,Y=ymax·,∴該二次函數(shù)的圖象開口方向向上,最小值;且解得,(不合題意,舍去)或②當a<2<b時,此時二次函數(shù),b)當時,解得由于b>2,所以9∴舍去.綜上所述,9:·:·2.(中考真題)若關于x的函數(shù),(2)若函數(shù),求函數(shù)y的“共同體函數(shù)”h的最大值存在,求出k的值;若不存在,請說明理由.解析:(1)解:①當t=1時,則即∵y=4044x,k=4044>0,y隨x的增大②若函數(shù)y=kx+b,當k>0時,,,(2)解:對于函數(shù)∵2>0,x≥1,:9時,:時,4t2-1隨t的增大而增大,∴(3)對于函數(shù)y=-x2+4x+k=-(x-2)2+4+k,a=-1<0,拋物線開口向下,,,,時),,但故不合題意,故舍去;;∴h的最小值為9不合題意,故舍去時,即-日拋物線開口向上,在當t=2時,h有最小值3.(中考真題)我們不妨約定:若某函數(shù)圖像上至少存在不同的兩點關于原點對稱,則把該函數(shù)稱之為“H函數(shù)”,其圖像上關于原點對稱的兩點叫做一對“H點”,根據(jù)該約定,完成下列各題始終位于直線x=2的右側,求a,b,c的值或取值范圍;②(2c+b-a)(2c+b+3a)<0,求該H函數(shù)截x軸得到的線段長度的取值范圍.得解得又“該函數(shù)的對稱軸始終位于直線x=2的右側,9∵(2c+b-a)(2c+b+3a)<0,∴(2c-a-c-a)(2c-a-c+3a)<0,∴(c-2a)(c+2a)<0,∴c2<4a2,9則-2<t<0,又∵-2<t<0,∴2<|x?-x?|<2√7.壓軸題預測壓軸題預測(1)判斷下列函數(shù)是否有“極差常函數(shù)”?如果是,請在對應()內畫“√”,如果不是,請在對應()內畫“x”.①y=2x();②y=-2x+2(取值范圍.●●9h=pa+q-[p(a+3)+q]=3,∴p=-1,?!郺+3到對稱軸的距離,大于a∴a+3到對稱軸的距離,大于a到對稱軸的距離,9,∴4ah=(2a2+5a-3)2,9(1)若反比例函數(shù)和一次函數(shù)y,=kx-3,它們的“融合函數(shù)”過點(1,5),求k的值(2)∵y=yi+y?,∴y?=y-y?=2x2+x-4-ax2-bx-c=(2-a)x2+(1-b)x-4-c,∵yz,,,,又∵a+b+c=0,,a>b>c∴a>-a-c<c,∴,當6.(立信)已知:拋物線C:y=ax2+bx+c(a>0).(3)若不論m為任何實數(shù),直線與拋物線C?有且只有一個公共點,∴方程組只有一組解,y整理得:(1-a)m2-2(2a+b)m+b2-4ac=0,∵不論m為任何實數(shù),(1-a)m2-2(2a+b)m+b2-4ac∴拋物線的對稱軸為直線x=1,開口向上,∵當k≤x≤k+1時,拋物線的最小值為k,∴(k+1-1)2=k,解得:k=0或1,均不符合題意,舍去:,綜上所述,若k≤x≤k+1時,拋物線的最小值為k,k的值為0或為“k屬和合函數(shù)”,∴(3k-1)-(k-1)=4(3-1),∴k=4;綜上所述,k的值為4或-4;;①如圖1,當a≤-1時,當x=-1時,有y最大=2-2a,當x=1時,有y最小=2+2a∴(2-2a)-(2+2a)=k·[1-(-1)]=2k,∴k=-2a,②如圖2,當-1<a≤0時,當x=a時,有y晨大=a2+3,當x=1時,有y最小=2+2a,;③如圖3,當O<a≤1時,當x=a∴a2+3-(2-2a)=2k,..若k>0時,y隨x的增大而增大,∴或y=-2x+2(m+n).∴b=-1-a,將b=-1-a代入a2-6a-9=7b得:a2+a-2=0,∴a=-2或a=1,或999 綜上分析,a=-2,b=1或者綜上分析,a=-2,b=1或者,·【詳解】(1)解:∵A(1,3),B(-2,4),C(√3+2,√3-2),∴[A]=11|+|3|=4,[B]=|-2|+14|=6,[C]=|√3+2|+|√3-2|=√3+2+2-√3=4;(3)由題意方程組只有一組實數(shù)解,消去y得ax2+(b-1)x+1=0,由題意t=2b2-4a+2022=2b2-(b-1)2+2022=b2+2b+2021=(b+1)2+2020,∵-1≤b≤0,∴2020≤t≤2021.“B”)(3)∵y=x2-2tx+t2+t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高中生期末評語(35篇)
- 商業(yè)航天產(chǎn)業(yè)園項目運營方案
- 《糖尿病流行病學》課件
- 2024影樓與化妝師合作化妝造型服務合同書3篇
- 2024年高端酒店租賃服務詳細協(xié)議
- 2024年綠色環(huán)保家居建材供應與安裝合同3篇
- 2024年航空航天器零部件制造合同
- 2024年貨物清關代理合同
- 2024年短期租賃轎車協(xié)議
- 2024林業(yè)土地承包合同涉及林地征收補償協(xié)議
- 《農產(chǎn)品安全生產(chǎn)》考試復習題庫(學生用)
- 監(jiān)理安全保證體系
- 野外生存2-1課件
- 謝孟媛中級文法講義整理版
- 關于歷史大單元、大概念教學的討論 課件-高考歷史一輪復習
- 旅游者對鼓浪嶼旅游產(chǎn)品的滿意度調查問卷
- 人教版初二數(shù)學下冊《第十七章小結與復習》課件
- 科技水晶質感產(chǎn)品推廣PPT模板
- 化工儀表及自動化第六版-課后-答案
- 老化箱點檢表A3版本
- 消防設施驗收移交單
評論
0/150
提交評論