2023-2024學(xué)年江蘇省蘇州市高新區(qū)實(shí)驗(yàn)十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年江蘇省蘇州市高新區(qū)實(shí)驗(yàn)十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年江蘇省蘇州市高新區(qū)實(shí)驗(yàn)十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年江蘇省蘇州市高新區(qū)實(shí)驗(yàn)十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年江蘇省蘇州市高新區(qū)實(shí)驗(yàn)十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省蘇州市高新區(qū)實(shí)驗(yàn)十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對(duì)于這兩個(gè)圖象,有以下幾種說法:①當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減小;②當(dāng)G1與G2沒有公共點(diǎn)時(shí),y1隨x增大而增大;③當(dāng)k=2時(shí),G1與G2平行,且平行線之間的距離為65下列選項(xiàng)中,描述準(zhǔn)確的是()A.①②正確,③錯(cuò)誤 B.①③正確,②錯(cuò)誤C.②③正確,①錯(cuò)誤 D.①②③都正確2.已知x=1是方程x2+mx+n=0的一個(gè)根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–23.如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%4.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0),則線段AB的長為()A.1 B.2 C.3 D.45.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個(gè)交點(diǎn),則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或16.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.127.已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,下列判斷正確的是()A.1一定不是關(guān)于x的方程x2+bx+a=0的根B.0一定不是關(guān)于x的方程x2+bx+a=0的根C.1和﹣1都是關(guān)于x的方程x2+bx+a=0的根D.1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根8.如圖,內(nèi)接于,若,則A. B. C. D.9.如圖,菱形ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點(diǎn)F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.10.如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.二、填空題(共7小題,每小題3分,滿分21分)11.把兩個(gè)同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個(gè)三角尺的銳角頂點(diǎn)與另一個(gè)的直角頂點(diǎn)重合于點(diǎn)A,且另三個(gè)銳角頂點(diǎn)B,C,D在同一直線上.若AB=,則CD=_____.12.甲乙兩人進(jìn)行飛鏢比賽,每人各投5次,所得平均環(huán)數(shù)相等,其中甲所得環(huán)數(shù)的方差為15,乙所得環(huán)數(shù)如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).13.如圖,把一塊含有45°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對(duì)邊上.如果∠1=20°,那么∠2的度數(shù)是_____.14.已知一個(gè)正多邊形的內(nèi)角和是外角和的3倍,那么這個(gè)正多邊形的每個(gè)內(nèi)角是_____度.15.兩個(gè)反比例函數(shù)y=kx和y=1x在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=kx的圖象上,PC⊥x軸于點(diǎn)C,交16.拋物線的頂點(diǎn)坐標(biāo)是________.17.如圖,點(diǎn)A在反比例函數(shù)y=(x>0)的圖像上,過點(diǎn)A作AD⊥y軸于點(diǎn)D,延長AD至點(diǎn)C,使CD=2AD,過點(diǎn)A作AB⊥x軸于點(diǎn)B,連結(jié)BC交y軸于點(diǎn)E,若△ABC的面積為6,則k的值為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測(cè)旗桿頂部A的仰角為50°,觀測(cè)旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(5分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.(1)線段AE=______;(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑.20.(8分)濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息,回答下列問題:(l)楊老師采用的調(diào)查方式是______(填“普查”或“抽樣調(diào)查”);(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)______.(3)請(qǐng)估計(jì)全校共征集作品的件數(shù).(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.21.(10分)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B和D(4,-2(1)求拋物線的表達(dá)式.(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2).①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當(dāng)S取54(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).22.(10分)觀察下列等式:第1個(gè)等式:a1=-1,第2個(gè)等式:a2=,第3個(gè)等式:a3==2-,第4個(gè)等式:a4=-2,…按上述規(guī)律,回答以下問題:請(qǐng)寫出第n個(gè)等式:an=__________.a1+a2+a3+…+an=_________.23.(12分)某水果批發(fā)市場(chǎng)香蕉的價(jià)格如下表購買香蕉數(shù)(千克)不超過20千克20千克以上但不超過40千克40千克以上每千克的價(jià)格6元5元4元張強(qiáng)兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請(qǐng)問張強(qiáng)第一次,第二次分別購買香蕉多少千克?24.(14分)灞橋區(qū)教育局為了了解七年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽取了鐵一中濱河學(xué)部分七年級(jí)學(xué)生2016﹣2017學(xué)年第一學(xué)期參加實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,回答下列問題:(1)a=%,并補(bǔ)全條形圖.(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?(3)如果該區(qū)共有七年級(jí)學(xué)生約9000人,請(qǐng)你估計(jì)活動(dòng)時(shí)間不少于6天的學(xué)生人數(shù)大約有多少?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個(gè)臨界點(diǎn),易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點(diǎn)M(2,1),直線MN與直線MQ為G1與G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減?。还盛僬_;當(dāng)G1與G2沒有公共點(diǎn)時(shí),分三種情況:一是直線MN,但此時(shí)k=0,不符合要求;二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時(shí),此時(shí)y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時(shí),G1與G2平行正確,過點(diǎn)M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點(diǎn)睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.2、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計(jì)算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點(diǎn)睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.3、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯(cuò)誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯(cuò)誤的,故選B.【點(diǎn)睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.4、B【解析】

先將點(diǎn)A(1,0)代入y=x2﹣4x+m,求出m的值,將點(diǎn)A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點(diǎn)A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點(diǎn),設(shè)A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個(gè)不等的實(shí)數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點(diǎn)睛】此題考查拋物線與坐標(biāo)軸的交點(diǎn),解題關(guān)鍵在于將已知點(diǎn)代入.5、D【解析】

當(dāng)k+1=0時(shí),函數(shù)為一次函數(shù)必與x軸有一個(gè)交點(diǎn);當(dāng)k+1≠0時(shí),函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時(shí),函數(shù)為y=-4x+4,與x軸只有一個(gè)交點(diǎn);當(dāng)k-1≠0,即k≠1時(shí),由函數(shù)與x軸只有一個(gè)交點(diǎn)可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點(diǎn)睛】本題主要考查函數(shù)與x軸的交點(diǎn),掌握二次函數(shù)與x軸只有一個(gè)交點(diǎn)的條件是解題的關(guān)鍵,解決本題時(shí)注意考慮一次函數(shù)和二次函數(shù)兩種情況.6、B【解析】分析:過點(diǎn)D作DE⊥AB于E,先求出CD的長,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計(jì)算即可得解.詳解:如圖,過點(diǎn)D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點(diǎn)睛:考查角平分線的性質(zhì),角平分線上的點(diǎn)到角兩邊的距離相等.7、D【解析】

根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根可得出b=a+1或b=-(a+1),當(dāng)b=a+1時(shí),-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時(shí),1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關(guān)于x的方程x2+bx+a=0的根.【詳解】∵關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,∴,∴b=a+1或b=-(a+1).當(dāng)b=a+1時(shí),有a-b+1=0,此時(shí)-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時(shí),有a+b+1=0,此時(shí)1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關(guān)于x的方程x2+bx+a=0的根.故選D.【點(diǎn)睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根”是解題的關(guān)鍵.8、B【解析】

根據(jù)圓周角定理求出,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點(diǎn)睛】本題考查的是三角形的外接圓與外心,掌握?qǐng)A周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.9、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點(diǎn)睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對(duì)角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.10、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,如圖,∵⊙P的圓心坐標(biāo)是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點(diǎn)坐標(biāo)為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點(diǎn):1.垂徑定理;2.一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;3.勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點(diǎn)A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個(gè)同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點(diǎn)睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.12、甲.【解析】乙所得環(huán)數(shù)的平均數(shù)為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩(wěn)定.故答案為甲.點(diǎn)睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.13、25°.【解析】∵直尺的對(duì)邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.14、1.【解析】

先由多邊形的內(nèi)角和和外角和的關(guān)系判斷出多邊形的邊數(shù),即可得到結(jié)論.【詳解】設(shè)多邊形的邊數(shù)為n.因?yàn)檎噙呅蝺?nèi)角和為(n-2)?180°,正多邊形外角和為根據(jù)題意得:(n-2)?180解得:n=8.∴這個(gè)正多邊形的每個(gè)外角=360則這個(gè)正多邊形的每個(gè)內(nèi)角是180°故答案為:1.【點(diǎn)睛】考查多邊形的內(nèi)角和與外角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.15、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數(shù)圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會(huì)發(fā)生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會(huì)發(fā)生變化.③PA與PB始終相等;錯(cuò)誤,不一定,只有當(dāng)四邊形OCPD為正方形時(shí)滿足PA=PB.④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).正確,當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),k=2,則此時(shí)點(diǎn)B也一定是PD的中點(diǎn).故一定正確的是①②④16、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點(diǎn)坐標(biāo)是(0,-1),故答案為(0,-1).17、1【解析】

連結(jié)BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義得到k的值.【詳解】連結(jié)BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點(diǎn)D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.三、解答題(共7小題,滿分69分)18、7.6m.【解析】

利用CD及正切函數(shù)的定義求得BC,AC長,把這兩條線段相減即為AB長【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,正確應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.19、(1)5;(2);(3)時(shí),半徑PF=;t=16,半徑PF=12.【解析】

(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí)PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),即t>4,此時(shí),EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí),PF=FG,分以下三種情況:①當(dāng)t=0或t=4時(shí),顯然符合條件的⊙F不存在;②當(dāng)0<t<4時(shí),如解圖1,作FG⊥BC于點(diǎn)G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時(shí)⊙F的半徑PF=;③當(dāng)t>4時(shí),如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時(shí)⊙F的半徑PF=12.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,動(dòng)點(diǎn)的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).20、(1)抽樣調(diào)查(2)150°(3)180件(4)【解析】分析:(1)楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班,屬于抽樣調(diào)查.(2)由題意得:所調(diào)查的4個(gè)班征集到的作品數(shù)為:6÷=24(件),C班作品的件數(shù)為:24-4-6-4=10(件);繼而可補(bǔ)全條形統(tǒng)計(jì)圖;(3)先求出抽取的4個(gè)班每班平均征集的數(shù)量,再乘以班級(jí)總數(shù)可得;(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩名學(xué)生性別相同的情況,再利用概率公式即可求得答案.詳解:(1)楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班,屬于抽樣調(diào)查.故答案為抽樣調(diào)查.(2)所調(diào)查的4個(gè)班征集到的作品數(shù)為:6÷=24件,C班有24﹣(4+6+4)=10件,補(bǔ)全條形圖如圖所示,扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)360°×=150°;故答案為150°;(3)∵平均每個(gè)班=6件,∴估計(jì)全校共征集作品6×30=180件.(4)畫樹狀圖得:∵共有20種等可能的結(jié)果,兩名學(xué)生性別相同的有8種情況,∴恰好選取的兩名學(xué)生性別相同的概率為.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。瑫r(shí)古典概型求法:(1)算出所有基本事件的個(gè)數(shù)n;(2)求出事件A包含的所有基本事件數(shù)m;(3)代入公式P(A)=,求出P(A)..21、(1)拋物線的解析式為:y=1(2)①S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點(diǎn)的坐標(biāo)是(3,﹣32(3)M的坐標(biāo)為(1,﹣83【解析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);(3)A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,求出直線BD的解析式,把拋物線的對(duì)稱軸x=1代入即可求出M的坐標(biāo).試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(biāo)(2,﹣2)A點(diǎn)的坐標(biāo)是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當(dāng)S=54時(shí),5t2﹣8t+4=54,得20t解得t=12,t=11此時(shí)點(diǎn)P的坐標(biāo)為(1,﹣2),Q點(diǎn)的坐標(biāo)為(2,﹣32若R點(diǎn)存在,分情況討論:(i)假設(shè)R在BQ的右邊,如圖所示,這時(shí)QR=PB,RQ∥PB,則R的橫坐標(biāo)為3,R的縱坐標(biāo)為﹣32即R(3,﹣32代入y=1∴這時(shí)存在R(3,﹣32(ii)假設(shè)R在QB的左邊時(shí),這時(shí)PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點(diǎn)一點(diǎn)R(3,﹣32答:存在,R點(diǎn)的坐標(biāo)是(3,﹣32(3)如圖,M′B=M′A,∵A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,理由是:∵M(jìn)A=MB,若M不為L與DB的交點(diǎn),則三點(diǎn)B、M、D構(gòu)成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時(shí),差值最大,設(shè)直線BD的解析式是y=kx+b,把B、D的坐標(biāo)代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標(biāo)為(1,﹣83答:M的坐標(biāo)為(1,﹣83考點(diǎn):二次函數(shù)綜合題.22、(1)=;(2).【解析】

(1)根據(jù)題意可知,,,,,…由此得出第n個(gè)等式:an=;(2)將每一個(gè)等式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論