上海市西南模范中學2025屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
上海市西南模范中學2025屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
上海市西南模范中學2025屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
上海市西南模范中學2025屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
上海市西南模范中學2025屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市西南模范中學2025屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列各角中,與126°角終邊相同的角是()A. B. C. D.2.函數(shù)則=()A. B. C.2 D.03.已知在角終邊上,若,則()A. B.-2 C.2 D.4.在中,角,,所對的邊分別為,,,若,則最大角的余弦值為()A. B. C. D.5.經(jīng)過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.6.設點M是直線上的一個動點,M的橫坐標為,若在圓上存在點N,使得,則的取值范圍是()A. B. C. D.7.已知分別是的邊的中點,則①;②;③中正確等式的個數(shù)為()A.0 B.1 C.2 D.38.如果直線a平行于平面,則()A.平面內有且只有一直線與a平行B.平面內有無數(shù)條直線與a平行C.平面內不存在與a平行的直線D.平面內的任意直線與直線a都平行9.過點且與直線平行的直線方程是()A. B.C. D.10.設等比數(shù)列的前項和為,且,則()A.255 B.375 C.250 D.200二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為.12.已知三棱錐的底面是腰長為2的等腰直角三角形,側棱長都等于,則其外接球的體積為______.13.已知數(shù)列{an}的前n項和為Sn,滿足:a2=2a1,且Sn=+1(n≥2),則數(shù)列{an}的通項公式為_______.14.計算__________.15.在中,角、、所對的邊為、、,若,,,則角________.16.若函數(shù)的圖象與直線恰有兩個不同交點,則m的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設向量、滿足,,.(1)求的值;(2)若,求實數(shù)的值.18.設集合,其中.(1)寫出集合中的所有元素;(2)設,證明“”的充要條件是“”(3)設集合,設,使得,且,試判斷“”是“”的什么條件并說明理由.19.某地合作農(nóng)場的果園進入盛果期,果農(nóng)利用互聯(lián)網(wǎng)電商渠道銷售蘋果,蘋果單果直徑不同則單價不同,為了更好的銷售,現(xiàn)從該合作農(nóng)場果園的蘋果樹上隨機摘下了50個蘋果測量其直徑,經(jīng)統(tǒng)計,其單果直徑分布在區(qū)間內(單位:),統(tǒng)計的莖葉圖如圖所示:(Ⅰ)按分層抽樣的方法從單果直徑落在,的蘋果中隨機抽取6個,則從,的蘋果中各抽取幾個?(Ⅱ)從(Ⅰ)中選出的6個蘋果中隨機抽取2個,求這兩個蘋果單果直徑均在內的概率;(Ⅲ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率,若該合作農(nóng)場的果園有20萬個蘋果約5萬千克待出售,某電商提出兩種收購方案:方案:所有蘋果均以5.5元/千克收購;方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個蘋果,定價收購方式為:單果直徑在內按35元/箱收購,在內按45元/箱收購,在內按55元/箱收購.包裝箱與分揀裝箱費用為5元/箱(該費用由合作農(nóng)場承擔).請你通過計算為該合作農(nóng)場推薦收益最好的方案.20.已知關于的不等式.(1)當時,求不等式的解集;(2)當且m≠1時,求不等式的解集.21.(1)計算(2)已知,求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

寫出與126°的角終邊相同的角的集合,取k=1得答案.【詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}.取k=1,可得α=486°.∴與126°的角終邊相同的角是486°.故選B.【點睛】本題考查終邊相同角的計算,是基礎題.2、B【解析】

先求得的值,進而求得的值.【詳解】依題意,,故選B.【點睛】本小題主要考查分段函數(shù)求值,考查運算求解能力,屬于基礎題.3、C【解析】

由正弦函數(shù)的定義求解.【詳解】,顯然,∴.故選C.【點睛】本題考查正弦函數(shù)的定義,屬于基礎題.解題時注意的符號.4、D【解析】

設,由余弦定理可求出.【詳解】設,所以最大的角為,故選D.【點睛】本題主要考查了余弦定理,大邊對大角,屬于中檔題.5、B【解析】

設出圓心坐標,由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標準方程,考查直線與圓的位置關系.求出圓心坐標與半徑是求圓標準方程的基本方法.6、D【解析】

由題意畫出圖形,根據(jù)直線與圓的位置關系可得相切,設切點為P,數(shù)形結合找出M點滿足|MP|≤|OP|的范圍,從而得到答案.【詳解】由題意可知直線與圓相切,如圖,設直線x+y?2=0與圓相切于點P,要使在圓上存在點N,使得,使得最大值大于或等于時一定存在點N,使得,而當MN與圓相切時,此時|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【點睛】本題考查直線與圓的位置關系,根據(jù)數(shù)形結合思想,畫圖進行分析可得,屬于中等題.7、C【解析】分別是的邊的中點;故①錯誤,②正確故③正確;所以選C.8、B【解析】

根據(jù)線面平行的性質解答本題.【詳解】根據(jù)線面平行的性質定理,已知直線平面.

對于A,根據(jù)線面平行的性質定理,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內有無數(shù)條直線與a平行;故A錯誤;

對于B,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內有無數(shù)條直線與a平行;故B正確;

對于C,根據(jù)線面平行的性質,過直線a的平面與平面相交得到的交線,則直線,所以C錯誤;

對于D,根據(jù)線面平行的性質,過直線a的平面與平面相交得到的交線,則直線,則在平面內與直線相交的直線與a不平行,所以D錯誤;

故選:B.【點睛】本題考查了線面平行的性質定理;如果直線與平面平行,那么過直線的平面與已知平面相交,直線與交線平行.9、D【解析】

先由題意設所求直線為:,再由直線過點,即可求出結果.【詳解】因為所求直線與直線平行,因此,可設所求直線為:,又所求直線過點,所以,解得,所求直線方程為:.故選:D【點睛】本題主要考查求直線的方程,熟記直線方程的常見形式即可,屬于基礎題型.10、A【解析】

由等比數(shù)列的性質,仍是等比數(shù)列,先由是等比數(shù)列求出,再由是等比數(shù)列,可得.【詳解】由題得,成等比數(shù)列,則有,,解得,同理有,,解得.故選:A【點睛】本題考查等比數(shù)列前n項和的性質,這道題也可以先由求出數(shù)列的首項和公比q,再由前n項和公式直接得。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】略12、【解析】

先判斷球心在上,再利用勾股定理得到半徑,最后計算體積.【詳解】三棱錐的底面是腰長為2的等腰直角三角形,側棱長都等于為中點,為外心,連接,平面球心在上設半徑為故答案為【點睛】本題考查了三棱錐外接球的體積,意在考查學生的空間想象能力和計算能力.13、【解析】

推導出a1=1,a2=2×1=2,當n≥2時,an=Sn﹣Sn﹣1,即,由此利用累乘法能求出數(shù)列{an}的通項公式.【詳解】∵數(shù)列{an}的前n項和為Sn,滿足:a2=2a1,且Sn1(n≥2),∴a2=S2﹣S1=a2+1﹣a1,解得a1=1,a2=2×1=2,∴,解得a3=4,,解得a4=6,當n≥2時,an=Sn﹣Sn﹣1,即,∴n≥2時,22n﹣2,∴數(shù)列{an}的通項公式為.故答案為:.【點睛】本題考查數(shù)列的通項公式的求法,考查數(shù)列的通項公式與前n項和公式的關系,考查運算求解能力,分類討論是本題的易錯點,是基礎題.14、【解析】

采用分離常數(shù)法對所給極限式變形,可得到極限值.【詳解】.【點睛】本題考查分離常數(shù)法求極限,難度較易.15、.【解析】

利用余弦定理求出的值,結合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點睛】本題考查余弦定理的應用和反三角函數(shù),解題時要充分結合元素類型選擇正弦定理和余弦定理解三角形,考查計算能力,屬于中等題.16、【解析】

化簡函數(shù)解析式為,做出函數(shù)的圖象,數(shù)形結合可得的取值范圍.【詳解】解:因為所以,,由,可得,則函數(shù),的圖象與直線恰有兩個不同交點,即方程在上有兩個不同的解,畫出的圖象如下所示:依題意可得時,函數(shù)的圖象與直線恰有兩個不同交點,故答案為:【點睛】本題主要考查正弦函數(shù)的最大值和單調性,函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象特征,體現(xiàn)了轉化、數(shù)形結合的數(shù)學思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)將等式兩邊平方,利用平面向量數(shù)量積的運算律可計算出的值;(2)由轉化為,然后利用平面向量數(shù)量積的運算律可求出實數(shù)的值.【詳解】(1)在等式兩邊平方得,即,即,解得;(2),,即,解得.【點睛】本題考查利用平面向量的模求數(shù)量積,同時也考查了利用平面向量數(shù)量積來處理平面向量垂直的問題,考查化歸與轉化數(shù)學思想,屬于基礎題.18、(1),,,;(2)證明見解析;(3)充要條件.【解析】

(1)根據(jù)題意,直接列出即可(2)利用的和的符號和最高次的相同,利用排除法可以證明。(3)利用(2)的結論完成(3)即可?!驹斀狻浚?)中的元素有,,,。(2)充分性:當時,顯然成立。必要性:若=1,則若=,則若的值有個1,和個。不妨設2的次數(shù)最高次為次,其系數(shù)為1,則,說明只要最高次的系數(shù)是正的,整個式子就是正的,同理,只要最高次的系數(shù)是負的,整個式子就是負的,說明最高次的系數(shù)只能是0,就是說,即綜上“”的充要條件是“”(3)等價于等價于由(2)得“=”的充要條件是“”即“=”是“”的充要條件【點睛】本題考查了數(shù)列遞推關系等差數(shù)列與等比數(shù)列的通項公式求和公式,考查了推理能力與計算能力,屬于難題.19、(Ⅰ)4個;(Ⅱ);(Ⅲ)方案是【解析】

(Ⅰ)單果直徑落在,,,的蘋果個數(shù)分別為6,12,分層抽樣的方法從單果直徑落在,,,的蘋果中隨機抽取6個,單果直徑落在,,,的蘋果分別抽取2個和4個;(Ⅱ)從這6個蘋果中隨機抽取2個,基本事件總數(shù),這兩個蘋果單果直徑均在,內包含的基本事件個數(shù),由此能求出這兩個蘋果單果直徑均在,內的概率;(Ⅲ)分別求出按方案與方案該合作農(nóng)場收益,比較大小得結論.【詳解】(Ⅰ)由莖葉圖可知,單果直徑落在,的蘋果分別為6個,12個,依題意知抽樣比為,所以單果直徑落在的蘋果抽取個數(shù)為個,單果直徑落在的蘋果抽取個數(shù)為個(Ⅱ)記單果直徑落在的蘋果為,,記單果直徑落在的蘋果為,若從這6個蘋果中隨機抽取2個,則所有可能結果為:,,,,,,,,,,,,,,,即基本事件的總數(shù)為15個.這兩個蘋果單果直徑均落在內包含的基本事件個數(shù)為6個,所以這兩個蘋果單果直徑均落在內的概率為.(Ⅲ)按方案:該合作農(nóng)場收益為:(萬元);按方案:依題意可知合作農(nóng)場的果園共有萬箱,即8000箱蘋果,則該合作農(nóng)場收益為:元,即為31.36萬元因為,所以為該合作農(nóng)場推薦收益最好的方案是.【點睛】本題考查概率、最佳方案的確定,考查莖葉圖等基礎知識,考查運算求解能力,是中檔題.20、(1);(2)當時,解集為;當或時,解集為【解析】

(1)當時,不等式是一個不含參的二次不等式,分解因式,即可求得;(2)對參數(shù)進行分類討論,從而確定不等式的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論