版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆北京市航空航天大學(xué)附屬中學(xué)數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]2.下列極限為1的是()A.(個9) B.C. D.3.在各項均為正數(shù)的等比數(shù)列中,公比.若,,,數(shù)列的前n項和為,則當(dāng)取最大值時,n的值為()A.8 B.9 C.8或9 D.174.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形5.已知直線的方程為,,則直線的傾斜角范圍()A. B.C. D.6.下列函數(shù)中最小值為4的是()A. B.C. D.7.阿波羅尼斯是古希臘著名的數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時期數(shù)學(xué)三巨匠,他對幾何問題有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指出的是:已知動點(diǎn)M與兩定點(diǎn)A,B的距離之比為,那么點(diǎn)M的軌跡是一個圓,稱之為阿波羅尼斯圓.請解答下面問題:已知,,若直線上存在點(diǎn)M滿足,則實(shí)數(shù)c的取值范圍是()A. B. C. D.8.在等比數(shù)列中,,,則()A. B.3 C. D.19.已知點(diǎn),,若直線過原點(diǎn),且、兩點(diǎn)到直線的距離相等,則直線的方程為()A.或 B.或C.或 D.或10.2019年是新中國成立70周年,渦陽縣某中學(xué)為慶祝新中國成立70周年,舉辦了“我和我的祖國”演講比賽,某選手的6個得分去掉一個最高分,去掉一個最低分,4個剩余分?jǐn)?shù)的平均分為91.現(xiàn)場制作的6個分?jǐn)?shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認(rèn),在圖中以表示,則4個剩余分?jǐn)?shù)的方差為()A.1 B. C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知,則____________.12.經(jīng)過點(diǎn)且在x軸上的截距等于在y軸上的截距的直線方程是________.13.程序:的最后輸出值為___________________.14.等差數(shù)列中,公差.則與的等差中項是_____(用數(shù)字作答)15.若向量,,且,則實(shí)數(shù)______.16.已知圓C:,點(diǎn)M的坐標(biāo)為(2,4),過點(diǎn)N(4,0)作直線交圓C于A,B兩點(diǎn),則的最小值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期和上的單調(diào)增區(qū)間:(2)若對任意的和恒成立,求實(shí)數(shù)的取值范圍.18.已知圓,直線(1)求證:直線過定點(diǎn);(2)求直線被圓所截得的弦長最短時的值;(3)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).19.從甲、乙、丙、丁四個人中選兩名代表,求:(1)甲被選中的概率;(2)丁沒被選中的概率.20.已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實(shí)數(shù)解,求a的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標(biāo)函數(shù)即,易知直線在軸上的截距最大時,目標(biāo)函數(shù)取得最小值;在軸上的截距最小時,目標(biāo)函數(shù)取得最大值,即在點(diǎn)處取得最小值,為;在點(diǎn)處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點(diǎn)睛】線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即運(yùn)用數(shù)形結(jié)合的思想解題.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點(diǎn)處或邊界上取得.2、A【解析】
利用極限的運(yùn)算逐項求解判斷即可【詳解】對于A項,極限為1,對于B項,極限不存在,對于C項,極限為1.對于D項,,故選:A.【點(diǎn)睛】本題考查的極限的運(yùn)算及性質(zhì),準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題3、C【解析】∵為等比數(shù)列,公比為,且∴∴,則∴∴∴,∴數(shù)列是以4為首項,公差為的等差數(shù)列∴數(shù)列的前項和為令當(dāng)時,∴當(dāng)或9時,取最大值.故選C點(diǎn)睛:(1)在解決等差數(shù)列、等比數(shù)列的運(yùn)算問題時,有兩個處理思路:一是利用基本量將多元問題簡化為一元問題;二是利用等差數(shù)列、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差數(shù)列、等比數(shù)列問題的快捷方便的工具;(2)求等差數(shù)列的前項和最值的兩種方法:①函數(shù)法:利用等差數(shù)列前項和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解;②鄰項變號法:當(dāng)時,滿足的項數(shù)使得取得最大值為;當(dāng)時,滿足的項數(shù)使得取得最小值為.4、A【解析】
由可得四邊形為平行四邊形,由·=0得四邊形的對角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對角線互相垂直,∴平行四邊形為菱形.故選A.【點(diǎn)睛】本題考查向量相等和向量數(shù)量積的的應(yīng)用,解題的關(guān)鍵是正確理解有關(guān)的概念,屬于基礎(chǔ)題.5、B【解析】
利用直線斜率與傾斜角的關(guān)系即可求解.【詳解】由直線的方程為,所以,即直線的斜率,由.所以,又直線的傾斜角的取值范圍為,由正切函數(shù)的性質(zhì)可得:直線的傾斜角為.故選:B【點(diǎn)睛】本題考查了直線的斜率與傾斜角之間的關(guān)系,同時考查了正弦函數(shù)的值域以及正切函數(shù)的性質(zhì),屬于基礎(chǔ)題.6、C【解析】
對于A和D選項不能保證基本不等式中的“正數(shù)”要求,對于B選項不能保證基本不等式中的“相等”要求,即可選出答案.【詳解】對于A,當(dāng)時,顯然不滿足題意,故A錯誤.對于B,,,.當(dāng)且僅當(dāng),即時,取得最小值.但無解,故B錯誤.對于D,當(dāng)時,顯然不滿足題意,故D錯誤.對于C,,,.當(dāng)且僅當(dāng),即時,取得最小值,故C正確.故選:C【點(diǎn)睛】本題主要考查基本不等式,熟練掌握基本不等式的步驟為解題的關(guān)鍵,屬于中檔題.7、B【解析】
根據(jù)題意設(shè)點(diǎn)M的坐標(biāo)為,利用兩點(diǎn)間的距離公式可得到關(guān)于的一元二次方程,只需即可求解.【詳解】點(diǎn)M在直線上,不妨設(shè)點(diǎn)M的坐標(biāo)為,由直線上存在點(diǎn)M滿足,則,整理可得,,所以實(shí)數(shù)c的取值范圍為.故選:B【點(diǎn)睛】本題考查了兩點(diǎn)間的距離公式、一元二次不等式的解法,考查了學(xué)生分析問題解決問題的能力,屬于中檔題.8、C【解析】
根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列,故.故選:C【點(diǎn)睛】本題主要考查了等比數(shù)列性質(zhì)求解某項的方法,屬于基礎(chǔ)題.9、A【解析】
分為斜率存在和不存在兩種情況,根據(jù)點(diǎn)到直線的距離公式得到答案.【詳解】當(dāng)斜率不存在時:直線過原點(diǎn),驗證滿足條件.當(dāng)斜率存在時:直線過原點(diǎn),設(shè)直線為:即故答案選A【點(diǎn)睛】本題考查了點(diǎn)到直線的距離公式,忽略斜率不存在的情況是容易犯的錯誤.10、B【解析】
由題意得x≥3,由此能求出4個剩余數(shù)據(jù)的方差.【詳解】由題意得x≥3,則4個剩余分?jǐn)?shù)的方差為:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故選B.【點(diǎn)睛】本題考查了方差的計算問題,也考查了莖葉圖的性質(zhì)、平均數(shù)、方差等基礎(chǔ)知識,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、84【解析】
根據(jù)余弦定理以及同角公式求得,再根據(jù)面積公式可得答案.【詳解】由余弦定理可得,又,所以,所以.故答案為:84【點(diǎn)睛】本題考查了余弦定理,考查了同角公式,考查了三角形的面積公式,屬于基礎(chǔ)題.12、或【解析】
當(dāng)直線不過原點(diǎn)時,設(shè)直線的方程為,把點(diǎn)代入求得的值,即可求得直線方程,當(dāng)直線過原點(diǎn)時,直線的方程為,綜合可得答案.【詳解】當(dāng)直線不過原點(diǎn)時,設(shè)直線的方程為,把點(diǎn)代入可得:,即此時直線的方程為:當(dāng)直線過原點(diǎn)時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【點(diǎn)睛】過原點(diǎn)的直線橫縱截距都為0,在解題的時候容易漏掉.13、4;【解析】
根據(jù)賦值語句的作用是將表達(dá)式所代表的值賦給變量,然后語句的順序可求出的值.【詳解】解:執(zhí)行程序語句:
=1后,=1;
=+1后,=2;
=+2后,=4;
后,輸出值為4;
故答案為:4【點(diǎn)睛】本題主要考查了賦值語句的作用,解題的關(guān)鍵對賦值語句的理解,屬于基礎(chǔ)題.14、5【解析】
根據(jù)等差中項的性質(zhì),以及的值,求出的值即是所求.【詳解】根據(jù)等差中項的性質(zhì)可知,的等差中項是,故.【點(diǎn)睛】本小題主要考查等差中項的性質(zhì),考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.15、【解析】
根據(jù),兩個向量平行的條件是建立等式,解之即可.【詳解】解:因為,,且所以解得故答案為:【點(diǎn)睛】本題主要考查兩個向量坐標(biāo)形式的平行的充要條件,屬于基礎(chǔ)題.16、8【解析】
先將所求化為M到AB中點(diǎn)的距離的最小值問題,再求得AB中點(diǎn)的軌跡為圓,利用點(diǎn)M到圓心的距離減去半徑求得結(jié)果.【詳解】設(shè)A、B中點(diǎn)為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點(diǎn)M到P的距離減去半徑,又,所以,故答案為8【點(diǎn)睛】本題考查了向量的加法運(yùn)算,考查了求圓中弦中點(diǎn)軌跡的幾何方法,考查了點(diǎn)點(diǎn)距公式,考查了分析解決問題的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)T=π,單調(diào)增區(qū)間為,(2)【解析】
(1)化簡函數(shù)得到,再計算周期和單調(diào)區(qū)間.(2)分情況的不同奇偶性討論,根據(jù)函數(shù)的最值得到答案.【詳解】解:(1)函數(shù)故的最小正周期.由題意可知:,解得:,因為,所以的單調(diào)增區(qū)間為,(2)由(1)得∵∴,∴,若對任意的和恒成立,則的最小值大于零.當(dāng)為偶數(shù)時,,所以,當(dāng)為奇數(shù)時,,所以,綜上所述,的范圍為.【點(diǎn)睛】本題考查了三角函數(shù)化簡,周期,單調(diào)性,恒成立問題,綜合性強(qiáng),意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18、(1)直線過定點(diǎn)(2).(3)在直線上存在定點(diǎn),使得為常數(shù).【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點(diǎn)A的坐標(biāo).(Ⅱ)當(dāng)AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點(diǎn)到直線的距離,轉(zhuǎn)化求解即可.(Ⅲ)由題知,直線MC的方程為,假設(shè)存在定點(diǎn)N滿足題意,則設(shè)P(x,y),,得,且,求出λ,然后求解比值.詳解:(Ⅰ)依題意得,令且,得直線過定點(diǎn)(Ⅱ)當(dāng)時,所截得弦長最短,由題知,,得,由得(Ⅲ)法一:由題知,直線的方程為,假設(shè)存在定點(diǎn)滿足題意,則設(shè),,得,且整理得,上式對任意恒成立,且解得,說以(舍去,與重合),綜上可知,在直線上存在定點(diǎn),使得為常數(shù)點(diǎn)睛:過定點(diǎn)的直線系A(chǔ)1x+B1y+C1+λ(A2x+B2y+C2)=0表示通過兩直線l1∶A1x+B1y+C1=0與l2∶A2x+B2y+C2=0交點(diǎn)的直線系,而這交點(diǎn)即為直線系所通過的定點(diǎn).19、(1);(2).【解析】
(1)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數(shù),再確定甲被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率(2)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數(shù),再確定丁沒被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率.【詳解】(1)從甲、乙、丙、丁四個人中選兩名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6種基本事件,其中甲被選中包括甲乙,甲丙,甲丁三種基本事件,所以甲被選中的概率為.(2)丁沒被選中包括甲乙,甲丙,乙丙三種基本事件,所以丁沒被選中的概率為.點(diǎn)睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.20、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南省職教高考《語文》考前沖刺模擬試題庫(附答案)
- 2025年武漢外語外事職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年日照職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年撫順師范高等??茖W(xué)校高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年湘教新版九年級歷史上冊階段測試試卷含答案
- 2025年外研版七年級科學(xué)上冊月考試卷
- 2025年外研版三年級起點(diǎn)選擇性必修3物理下冊階段測試試卷
- 智能系統(tǒng)內(nèi)容合同(2篇)
- 2025年浙教版選擇性必修1歷史下冊月考試卷含答案
- 2025年外研版三年級起點(diǎn)必修1歷史上冊階段測試試卷
- 成品移動公廁施工方案
- 2025年度部隊食堂食材采購與質(zhì)量追溯服務(wù)合同3篇
- 新人教版一年級下冊數(shù)學(xué)教案集體備課
- 繪本 課件教學(xué)課件
- 大型央國企信創(chuàng)化與數(shù)字化轉(zhuǎn)型規(guī)劃實(shí)施方案
- pcn培訓(xùn)培訓(xùn)課件
- 過錯方財產(chǎn)自愿轉(zhuǎn)讓協(xié)議書(2篇)
- 牧場物語-礦石鎮(zhèn)的伙伴們-完全攻略
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理體系 審核與認(rèn)證機(jī)構(gòu)要求》中文版(機(jī)翻)
- 農(nóng)業(yè)生產(chǎn)質(zhì)量安全風(fēng)險評估與監(jiān)控方案
- 人教版六年級上冊解方程練習(xí)300道及答案
評論
0/150
提交評論