版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省石家莊二中潤德學校數(shù)學高一下期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為的正三角形,E,F(xiàn)分別是PA,AB的中點,∠CEF=90°.則球O的體積為()A. B. C. D.2.已知是定義在上的奇函數(shù),且滿足,當時,,則等于()A.-1 B. C. D.13.已知,則的值為()A. B. C. D.4.已知向量,滿足,和的夾角為,則()A. B. C. D.15.設、、為平面,為、、直線,則下列判斷正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則6.設集合A={x|x≥–3},B={x|–3<x<1},則A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}7.若雙曲線的漸近線與直線所圍成的三角形面積為2,則該雙曲線的離心率為()A. B. C. D.8.已知函數(shù)在上是減函數(shù),則實數(shù)的取值范圍是()A. B. C. D.9.已知隨機事件中,與互斥,與對立,且,則()A.0.3 B.0.6 C.0.7 D.0.910.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18km,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過1min后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?精確到0.1km)()A.11.4 B.6.6C.6.5 D.5.6二、填空題:本大題共6小題,每小題5分,共30分。11.某校選修“營養(yǎng)與衛(wèi)生”課程的學生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法從這70名學生中抽取一個樣本,已知在高二年級的學生中抽取了8名,則在該校高一年級的學生中應抽取的人數(shù)為________.12.在△ABC中,點M,N滿足,若,則x=________,y=________.13.若,則_______.14.已知數(shù)列滿足,若,則數(shù)列的通項______.15.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.16.把函數(shù)的圖像上各點向右平移個單位,再把橫坐標變?yōu)樵瓉淼囊话耄v坐標擴大到原來的4倍,則所得的函數(shù)的對稱中心坐標為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在正方體,中,,,,,分別是棱,,,,的中點.(1)求證:平面平面;(2)求平面將正方體分成的兩部分體積之比.18.在正△ABC中,AB=2,(t∈R).(1)試用,表示:(2)當?取得最小值時,求t的值.19.為響應國家“精準扶貧、精準脫貧”的號召,某貧困縣在精準推進上下實功,在在精準落實上見實效現(xiàn)從全縣扶貧對象中隨機抽取人對扶貧工作的滿意度進行調(diào)查,以莖葉圖中記錄了他們對扶貧工作滿意度的分數(shù)(滿分分)如圖所示,已知圖中的平均數(shù)與中位數(shù)相同.現(xiàn)將滿意度分為“基本滿意”(分數(shù)低于平均分)、“滿意”(分數(shù)不低于平均分且低于分)和“很滿意”(分數(shù)不低于分)三個級別.(1)求莖葉圖中數(shù)據(jù)的平均數(shù)和的值;(2)從“滿意”和“很滿意”的人中隨機抽取人,求至少有人是“很滿意”的概率.20.已知向量.(1)若向量,且,求的坐標;(2)若向量與互相垂直,求實數(shù)的值.21.已知向量,,.(1)若,求實數(shù)的值;(2)若,求向量與的夾角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
計算可知三棱錐P-ABC的三條側棱互相垂直,可得球O是以PA為棱的正方體的外接球,球的直徑,即可求出球O的體積.【詳解】在△PAC中,設,,,,因為點E,F(xiàn)分別是PA,AB的中點,所以,在△PAC中,,在△EAC中,,整理得,因為△ABC是邊長為的正三角形,所以,又因為∠CEF=90°,所以,所以,所以.又因為△ABC是邊長為的正三角形,所以PA,PB,PC兩兩垂直,則球O是以PA為棱的正方體的外接球,則球的直徑,所以外接球O的體積為.故選D.【點睛】本題考查了三棱錐的外接球,考查了學生的空間想象能力,屬于中檔題.2、C【解析】
根據(jù)求得函數(shù)的周期,再結合奇偶性求得所求表達式的值.【詳解】由于故函數(shù)是周期為的周期函數(shù),故,故選C.【點睛】本小題主要考查函數(shù)的周期性,考查函數(shù)的奇偶性,考查函數(shù)值的求法,屬于基礎題.3、C【解析】
根據(jù)輔助角公式即可.【詳解】由輔助角公式得所以,選C.【點睛】本題主要考查了輔助角公式的應用:,屬于基礎題.4、B【解析】
由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】由題意可得.故選:B.【點睛】本題主要考查平面向量的數(shù)量積公式,屬基礎題.5、D【解析】
根據(jù)線面、面面有關的定理,對四個選項逐一分析,由此得出正確選項.【詳解】A選項不正確,因為根據(jù)面面垂直的性質(zhì)定理,需要加上:在平面內(nèi)或者平行于,這個條件,才能判定.B選項不正確,因為可能平行于.C選項不正確,因為當時,或者.D選項正確,根據(jù)垂直于同一條直線的兩個平面平行,得到,直線,則可得到.綜上所述,本小題選D.【點睛】本小題主要考查空間線面、面面位置關系有關命題真假性的判斷,屬于基礎題.6、C【解析】
根據(jù)并集的運算律可計算出集合A∪B.【詳解】∵A=xx≥-3,B=x故選:C.【點睛】本題考查集合的并集運算,解題的關鍵就是并集運算律的應用,考查計算能力,屬于基礎題.7、A【解析】漸近線為,時,,所以,即,,,故選A.8、C【解析】
根據(jù)復合函數(shù)單調(diào)性,結合對數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復合函數(shù)單調(diào)性同增異減可知,結合對數(shù)型函數(shù)的定義域得,解得.故選:C【點睛】本小題主要考查根據(jù)對數(shù)型復合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎題.9、C【解析】
由對立事件概率關系得到B發(fā)生的概率,再由互斥事件的概率計算公式求P(A+B).【詳解】因為,事件B與C對立,所以,又,A與B互斥,所以,故選C.【點睛】本題考查互斥事件的概率,能利用對立事件概率之和為1進行計算,屬于基本題.10、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航線離山頂h=×sin75°≈11.4(km).∴山高為18-11.4=6.6(km).選B.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】
利用分層抽樣的定義求解.【詳解】設從高一年級的學生中抽取x名,由分層抽樣的知識可知,解得x=6.故答案為6.【點睛】本題主要考查分層抽樣,意在考查學生對該知識的掌握水平和分析推理能力.12、【解析】特殊化,不妨設,利用坐標法,以A為原點,AB為軸,為軸,建立直角坐標系,,,則,.考點:本題考點為平面向量有關知識與計算,利用向量相等解題.13、【解析】
對兩邊平方整理即可得解.【詳解】由可得:,整理得:所以【點睛】本題主要考查了同角三角函數(shù)基本關系及二倍角的正弦公式,考查觀察能力及轉化能力,屬于較易題.14、【解析】
直接利用數(shù)列的遞推關系式和疊加法求出結果.【詳解】因為,所以當時,.時也成立.所以數(shù)列的通項.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊加法在數(shù)列中的應用,主要考察學生的運算能力和轉換能力,屬于基礎題.15、【解析】正方體體積為8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點睛:設幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.16、,【解析】
根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標變?yōu)樵瓉淼囊话?,可得,把函?shù)縱坐標擴大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)先證明平面,再證明平面平面;(2)連接,,則截面右側的幾何體為四棱錐和三棱錐,再求出每一部分的體積得解.【詳解】(1)證明:在正方體中,連接.因為,分別是,的中點,所以.因為平面,平面,所以.因為,所以平面,平面,所以,同理,因為,所以平面,因為平面,所以平面平面;(2)連接,,則截面右側的幾何體為四棱錐和三棱錐,設正方體棱長為1,所以,所以平面將正方體分成的兩部分體積之比為.【點睛】本題主要考查面面垂直關系的證明和幾何體體積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.18、(1)(2)【解析】
(1)根據(jù)即可得出,從而解得;(2)由(1)得,根據(jù)得,從而進行數(shù)量積的運算得出,配方即可得出當時,取最小值.【詳解】(1)∵;∴;∴;(2)∵△ABC是正三角形,且AB=2;∴;∵;∴;∴∴時,取最小值.【點睛】本題考查向量減法、加法的幾何意義,向量的數(shù)乘運算,以及向量的數(shù)量積運算及計算公式,配方法解決二次函數(shù)問題的方法,屬于基礎題.19、(1)平均數(shù)為;(2)【解析】
(1)由題意,根據(jù)圖中個數(shù)據(jù)的中位數(shù)為,由平均數(shù)與中位數(shù)相同,得平均數(shù)為,所以,解得;(2)依題意,人中,“基本滿意”有人,“滿意”有人,“很滿意”有人.“滿意”和“很滿意”的人共有人.分別記“滿意”的人為,,,,“很滿意”的人為,,,.從中隨機抽取人的一切可能結果所組成的基本事件共個:,,,,,,,,,,,,,,,,,,,,,,,,,,,.用事件表示“人中至少有人是很滿意”這一件事,則事件由個基本事件組成:,,,,,,,,,,,,,,,,,,,,,,共有22個.故事件的概率為【點睛】本題主要考查了莖葉圖的應用,以及古典概型及其概率的計算問題,其中解答中熟記莖葉圖的中的平均數(shù)和中位數(shù)的計算,以及利用列舉法得出基本事件的總數(shù)是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.20、(1)或(2)【解析】
(1)因為,所以可以設求出坐標,根據(jù)模長,可以得到參數(shù)的方程.(2)由于已知條件可以計算出與坐標(含有參數(shù))而兩向量垂直,可以得到關于的方程,完成本題.【詳解】(1)法一:設,則,所以解得所以或法二:設,因為,,所以,因為,所以解得或,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)務服務合同
- 2025年商標權續(xù)展與管理合同
- 勞動合同糾紛解決協(xié)議書范本
- 線下活動策劃執(zhí)行合同
- 連鎖店裝修合同解除協(xié)議
- 連鎖店統(tǒng)一裝修合同
- 自動化生產(chǎn)設備改造安裝合同
- 系統(tǒng)軟件開發(fā)合同
- 基于AI的智慧城市綠色能源規(guī)劃合同
- 新一代軟件開發(fā)項目合同
- 2024版《安全生產(chǎn)法》考試題庫附答案(共90題)
- 疥瘡病人的護理
- 2024版《糖尿病健康宣教》課件
- 新員工三級安全教育考試試題參考答案
- 數(shù)學史簡介課件可編輯全文
- 中學安全辦2024-2025學年工作計劃
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實施戰(zhàn)略知識考試題庫與答案
- 網(wǎng)絡安全基礎知識入門教程
- AI智慧物流園區(qū)整體建設方案
- 2024年遼寧鐵道職業(yè)技術學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 無痛人工流產(chǎn)術課件
評論
0/150
提交評論