版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西高安中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列結(jié)論正確的是().A.若ac<bc,則a<b B.若a2<C.若a>b,c<0,則ac<bc D.若a<b2.一個多面體的三視圖如圖所示.設(shè)在其直觀圖中,M為AB的中點(diǎn),則幾何體的體積為()A. B. C. D.3.在中,分別為角的對邊,若的面積為,則的值為()A. B. C. D.4.函數(shù)y=sin2x的圖象可能是A. B.C. D.5.如圖,扇形的圓心角為,半徑為1,則該扇形繞所在直線旋轉(zhuǎn)一周得到的幾何體的表面積為(
)A. B. C. D.6.在平行四邊形中,,若點(diǎn)滿足且,則A.10 B.25 C.12 D.157.“()”是“函數(shù)是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知,向量,則向量()A. B. C. D.9.函數(shù)在上的圖像大致為()A. B.C. D.10.已知,那么()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知方程的兩根分別為、、且,且__________.12.已知,,若,則______13.已知sin+cosα=,則sin2α=__14.已知原點(diǎn)O(0,0),則點(diǎn)O到直線x+y+2=0的距離等于.15.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.16.______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè).(1)用表示的最大值;(2)當(dāng)時,求的值.18.已知圓:與圓:.(1)求兩圓的公共弦長;(2)過平面上一點(diǎn)向圓和圓各引一條切線,切點(diǎn)分別為,設(shè),求證:平面上存在一定點(diǎn)使得到的距離為定值,并求出該定值.19.已知.(1)若對任意的,不等式上恒成立,求實(shí)數(shù)的取值范圍;(2)解關(guān)于的不等式.20.函數(shù)在同一個周期內(nèi),當(dāng)時,取最大值1,當(dāng)時,取最小值-1.(1)求函數(shù)的單調(diào)遞減區(qū)間.(2)若函數(shù)滿足方程,求在內(nèi)的所有實(shí)數(shù)根之和.21.某購物中心舉行抽獎活動,顧客從裝有編號分別為0,1,2,3四個球的抽獎箱中,每次取出1個球,記下編號后放回,連續(xù)取兩次(假設(shè)取到任何一個小球的可能性相同).若取出的兩個小球號碼相加之和等于5,則中一等獎;若取出的兩個小球號碼相加之和等于4,則中二等獎;若取出的兩個小球號碼相加之和等于3,則中三等獎;其它情況不中獎.(Ⅰ)求顧客中三等獎的概率;(Ⅱ)求顧客未中獎的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】分析:根據(jù)不等式性質(zhì)逐一分析即可.詳解:A.若ac<bc,則a<b,因?yàn)椴恢纁的符號,故錯誤;B.若a2<可令a=-1,b=-2,則結(jié)論錯誤;D.若a<b,則點(diǎn)睛:考查不等式的基本性質(zhì),做此類題型最好的方法就是舉例子注意排除即可.屬于基礎(chǔ)題.2、D【解析】
利用棱柱的體積減去兩個棱錐的體積,求解即可.【詳解】由題意可知幾何體C?MEF的體積:VADF?BCE?VF?AMCD?VE?MBC=.故選:D.【點(diǎn)睛】本題考查簡單空間圖形的三視圖及體積計算,根據(jù)三視圖求得幾何體的棱長及關(guān)系,利用幾何體體積公式即可求解,考查運(yùn)算能力和空間想象能力,屬于基礎(chǔ)題.3、B【解析】試題分析:由已知條件及三角形面積計算公式得由余弦定理得考點(diǎn):考查三角形面積計算公式及余弦定理.4、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r,,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).5、C【解析】
以所在直線為旋轉(zhuǎn)軸將整個圖形旋轉(zhuǎn)一周所得幾何體是一個半球,利用球面的表面積公式及圓的表面積公式即可求得.【詳解】由已知可得:以所在直線為旋轉(zhuǎn)軸將整個圖形旋轉(zhuǎn)一周所得幾何體是一個半球,其中半球的半徑為1,故半球的表面積為:故答案為:C【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)體的概念,以及球的表面積的計算,其中解答中熟記旋轉(zhuǎn)體的定義,以及球的表面積公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、C【解析】
先由題意,用,表示出,再由題中條件,根據(jù)向量數(shù)量積的運(yùn)算,即可求出結(jié)果.【詳解】因?yàn)辄c(diǎn)滿足,所以,則故選C.【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算,熟記平面向量基本定理以及數(shù)量積的運(yùn)算法則即可,屬于常考題型.7、C【解析】若,則,函數(shù)為奇函數(shù),所以充分性成立;反之,若函數(shù)是奇函數(shù),則,即,因此必要性也是成立,所以“”是“函數(shù)是奇函數(shù)”充要條件,故選C.8、A【解析】
由向量減法法則計算.【詳解】.故選A.【點(diǎn)睛】本題考查向量的減法法則,屬于基礎(chǔ)題.9、A【解析】
利用函數(shù)的奇偶性和函數(shù)圖像上的特殊點(diǎn),對選項(xiàng)進(jìn)行排除,由此得出正確選項(xiàng).【詳解】由于,所以函數(shù)為奇函數(shù),圖像關(guān)于原點(diǎn)對稱,排除C選項(xiàng).由于,所以排除D選項(xiàng).由于,所以排除B選項(xiàng).故選:A.【點(diǎn)睛】本小題主要考查函數(shù)圖像的識別,考查函數(shù)的奇偶性、特殊點(diǎn),屬于基礎(chǔ)題.10、A【解析】依題意有,故二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由韋達(dá)定理和兩角和的正切公式可得,進(jìn)一步縮小角的范圍可得,進(jìn)而可求.【詳解】方程兩根、,,,,又,,,,,,,結(jié)合,,故答案為.【點(diǎn)睛】本題考查兩角和與差的正切函數(shù),涉及韋達(dá)定理,屬中檔題.12、【解析】
根據(jù)向量垂直的坐標(biāo)表示列出等式,求出,再利用二倍角公式、平方關(guān)系即可求出.【詳解】由得,,解得,.【點(diǎn)睛】本題主要考查了向量垂直的坐標(biāo)表示以及二倍角公式、平方關(guān)系的應(yīng)用.13、【解析】∵,∴即,則.故答案為:.14、【解析】
由點(diǎn)到直線的距離公式得:點(diǎn)O到直線x+y+2=0的距離等于,故答案為.15、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當(dāng)且僅當(dāng),時,取等號.故的最大值為,故答案為:.【點(diǎn)睛】本題主要考查兩個向量共線的性質(zhì),考查兩個向量坐標(biāo)形式的運(yùn)算和基本不等式,屬于基礎(chǔ)題.16、【解析】
先令,得到,兩式作差,根據(jù)等比數(shù)列的求和公式,化簡整理,即可得出結(jié)果.【詳解】令,則,兩式作差得:所以故答案為:【點(diǎn)睛】本題主要考查數(shù)列的求和,熟記錯位相加法求數(shù)列的和即可,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】
(1)化f(x)為sinx的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),對a討論求出函數(shù)最大值;(2)由M(a)=2求出對應(yīng)的a值即可.【詳解】(1),∵,∴.①當(dāng),即時,;②當(dāng),即時,;③當(dāng),即時,.∴(2)當(dāng)時,(舍)或-2(舍);當(dāng)時,;當(dāng)時,.綜上或.【點(diǎn)睛】本題主要考查了三角函數(shù)恒等變換的應(yīng)用和二次函數(shù)的性質(zhì)問題,考查了分段函數(shù)求值問題,是中檔題.18、(1)(2)【解析】
(1)把兩圓方程相減得到公共弦所在直線方程,再根據(jù)點(diǎn)到直線距離公式與圓的垂徑定理求兩圓的公共弦長;(2)根據(jù)圓的切線長與半徑的關(guān)系代入化簡即可得到點(diǎn)的軌跡方程,進(jìn)而求解.【詳解】解:(1)由,相減得兩圓的公共弦所在直線方程為:,設(shè)(0,0)到的距離為,則所以,公共弦長為所以,公共弦長為.(2)證明:由題設(shè)得:化簡得:配方得:所以,存在定點(diǎn)使得到的距離為定值,且該定值為.【點(diǎn)睛】本題主要考查圓的應(yīng)用.求兩圓的公共弦關(guān)鍵在求公共弦所在直線方程;求動點(diǎn)與定點(diǎn)距離問題,首先要求出動點(diǎn)的軌跡方程.19、(1);(2)見解析.【解析】
(1)參變分離后可得在上恒成立,利用基本不等式可求的最小值,從而得到參數(shù)的取值范圍.(2)原不等式可化為,就對應(yīng)方程的兩根的大小關(guān)系分類討論可得不等式的解集.【詳解】(1)對任意的,恒成立即恒成立.因?yàn)楫?dāng)時,(當(dāng)且僅當(dāng)時等號成立),所以即.(2)不等式,即,①當(dāng)即時,;②當(dāng)即時,;③當(dāng)即時,.綜上:當(dāng)時,不等式解集為;當(dāng)時,不等式解集為;當(dāng)時,不等式解集為.【點(diǎn)睛】含參數(shù)的一元二次不等式,其一般的解法是:先考慮對應(yīng)的二次函數(shù)的開口方向,再考慮其判別式的符號,其次在判別式大于零的條件下比較兩根的大小,最后根據(jù)不等號的方向和開口方向得到不等式的解.一元二次不等式的恒成立問題,參變分離后可以轉(zhuǎn)化為函數(shù)的最值進(jìn)行討論,后者可利用基本不等式來求.20、(1),;(2).【解析】
(1)先求出周期得,由最高點(diǎn)坐標(biāo)可求得,然后由正弦函數(shù)的單調(diào)性得結(jié)論;(2)由直線與的圖象交點(diǎn)的對稱性可得.【詳解】(1)由題意,∴,又,,,由得,∴,令得,∴單調(diào)減區(qū)間是,;(2)在含有三個周期,如圖,的圖象與在上有六個交點(diǎn),前面兩個交點(diǎn)關(guān)于直線對稱,中間兩個關(guān)于直線對稱,最后兩個關(guān)于直線對稱,∴所求六個根的和為.【點(diǎn)睛】本題考查由三角函數(shù)的性質(zhì)求解析式,考查函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)與方程根的分布問題.函數(shù)零點(diǎn)與方程根的分布問題可用數(shù)形結(jié)合思想,把方程的根轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的橫坐標(biāo),再利用對稱性求解.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用列舉法列出所有可能,設(shè)事件為“顧客中三等獎”,的事件.由古典概型概率計算公式即可求解.(Ⅱ)先分別求得中一等獎、二等獎和三等獎的概率,根據(jù)對立事件的概率性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保公益宣傳品采購與服務(wù)合同3篇
- 2024年版:建筑工程專業(yè)分包合同模板
- 簡易警報器課程設(shè)計
- 工程經(jīng)濟(jì)學(xué)課程設(shè)計
- 航天能源課程設(shè)計思路
- 電工實(shí)訓(xùn)教學(xué)課程設(shè)計
- 《黑衣“超人”》課件
- 機(jī)械沖床課程設(shè)計題目
- 色彩搭配系統(tǒng)課程設(shè)計
- 米利根案件課程設(shè)計
- 重慶市2023-2024學(xué)年七年級上學(xué)期期末考試語文試題(解析版)
- 傳承傳統(tǒng)文化教育教案(3篇模板)
- QBT 2460-1999 聚碳酸酯(PC)飲用水罐
- 2024新《公司法》修訂重點(diǎn)解讀課件
- 《電子吊秤校準(zhǔn)規(guī)范》公示件
- 《跟上兔子》繪本四年級第1季Can-I-Play-with-You教學(xué)課件
- 手術(shù)室敏感指標(biāo)構(gòu)建
- 書法創(chuàng)作設(shè)計方案
- MOOC 軟件工程概論-北京聯(lián)合大學(xué) 中國大學(xué)慕課答案
- 2023年鐵路工務(wù)安全規(guī)則正文
- 生態(tài)安全與環(huán)境風(fēng)險評估預(yù)警機(jī)制
評論
0/150
提交評論