江蘇省連云港市東??h重點達標名校2023-2024學年中考聯(lián)考數(shù)學試題含解析_第1頁
江蘇省連云港市東??h重點達標名校2023-2024學年中考聯(lián)考數(shù)學試題含解析_第2頁
江蘇省連云港市東海縣重點達標名校2023-2024學年中考聯(lián)考數(shù)學試題含解析_第3頁
江蘇省連云港市東??h重點達標名校2023-2024學年中考聯(lián)考數(shù)學試題含解析_第4頁
江蘇省連云港市東??h重點達標名校2023-2024學年中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省連云港市東??h重點達標名校2023-2024學年中考聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是()A. B. C. D.2.下列運算正確的是()A. B.C. D.3.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠34.|﹣3|的值是()A.3 B. C.﹣3 D.﹣5.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結(jié)論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④6.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.7.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.18.如圖是由若干個小正方體組成的幾何體從上面看到的圖形,小正方形中的數(shù)字表示該位置小正方體的個數(shù),這個幾何體從正面看到的圖形是()A. B. C. D.9.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°10.下列四個命題中,真命題是()A.相等的圓心角所對的兩條弦相等B.圓既是中心對稱圖形也是軸對稱圖形C.平分弦的直徑一定垂直于這條弦D.相切兩圓的圓心距等于這兩圓的半徑之和11.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)12.方程5x+2y=-9與下列方程構成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用_____秒鐘.14.一個凸多邊形的內(nèi)角和與外角和相等,它是______邊形.15.在我國著名的數(shù)學書九章算術中曾記載這樣一個數(shù)學問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數(shù)、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數(shù)、羊價各是多少?設羊價為x錢,則可列關于x的方程為______.16.一個布袋中裝有1個藍色球和2個紅色球,這些球除顏色外其余都相同,隨機摸出一個球后放回搖勻,再隨機摸出一個球,則兩次摸出的球都是紅球的概率是_____.17.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.18.函數(shù)中,自變量的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)博鰲亞洲論壇2018年年會于4月8日在海南博鰲拉開帷幕,組委會在會議中心的墻壁上懸掛會旗,已知矩形DCFE的兩邊DE,DC長分別為1.6m,1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當會旗展開時,如圖所示,(1)求DF的長;(2)求點E到墻壁AB所在直線的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(6分)解不等式:﹣≤121.(6分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.22.(8分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數(shù)據(jù):23.(8分)已知拋物線經(jīng)過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當,兩點中只有一個點在圖形的內(nèi)部時,請直接寫出的取值范圍.24.(10分)為了提高中學生身體素質(zhì),學校開設了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學生;請補全兩幅統(tǒng)計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.25.(10分)我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有______人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為______°.(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.26.(12分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)27.(12分)學生對待學習的態(tài)度一直是教育工作者關注的問題之一.為此,某區(qū)教委對該區(qū)部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調(diào)查中,共調(diào)查了名學生;將圖①補充完整;求出圖②中C級所占的圓心角的度數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.2、D【解析】

由去括號法則:如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.3、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.4、A【解析】分析:根據(jù)絕對值的定義回答即可.詳解:負數(shù)的絕對值等于它的相反數(shù),故選A.點睛:考查絕對值,非負數(shù)的絕對值等于它本身,負數(shù)的絕對值等于它的相反數(shù).5、B【解析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),等高模型、三邊關系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì),解直角三角形,解題的關鍵是掌握它們的性質(zhì)進行解題.6、B【解析】

拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結(jié)果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),

可設新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.7、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據(jù)圓的知識得出點P的運動軌跡.8、C【解析】

先根據(jù)俯視圖判斷出幾何體的形狀,再根據(jù)主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個和2個小正方體搭成兩個長方體,

后面一排分別有2個、3個、1個小正方體搭成三個長方體,

并且這兩排右齊,故從正面看到的視圖為:.

故選:C.【點睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關鍵.9、C【解析】

首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質(zhì)知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關鍵是注意數(shù)形結(jié)合思想的應用.10、B【解析】試題解析:A.在同圓或等圓中,相等的圓心角所對的兩條弦相等,故A項錯誤;B.圓既是中心對稱圖形也是軸對稱圖形,正確;C.平分弦(不是直徑)的直徑一定垂直于這條弦,故C選項錯誤;D.外切兩圓的圓心距等于這兩圓的半徑之和,故選項D錯誤.故選B.11、C【解析】

過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【點睛】本題考查反比例函數(shù)的綜合問題,涉及全等三角形的性質(zhì)與判定,反比例函數(shù)的解析式,平移的性質(zhì)等知識,綜合程度較高,屬于中等題型.12、D【解析】試題分析:將x與y的值代入各項檢驗即可得到結(jié)果.解:方程5x+2y=﹣9與下列方程構成的方程組的解為的是3x﹣4y=﹣1.故選D.點評:此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.5秒.【解析】

把此正方體的點A所在的面展開,然后在平面內(nèi),利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.14、四【解析】

任何多邊形的外角和是360度,因而這個多邊形的內(nèi)角和是360度.n邊形的內(nèi)角和是(n-2)?180°,如果已知多邊形的內(nèi)角和,就可以得到一個關于邊數(shù)的方程,解方程就可以求出多邊形的邊數(shù).【詳解】解:設邊數(shù)為n,根據(jù)題意,得(n-2)?180=360,解得n=4,則它是四邊形.故填:四.【點睛】此題主要考查已知多邊形的內(nèi)角和求邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.15、【解析】

設羊價為x錢,根據(jù)題意可得合伙的人數(shù)為或,由合伙人數(shù)不變可得方程.【詳解】設羊價為x錢,根據(jù)題意可得方程:,故答案為:.【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.16、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【詳解】畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【點睛】本題主要考查了求隨機事件概率的方法,解本題的要點在于根據(jù)題意畫出樹狀圖,從而求出答案.17、【解析】

根據(jù)概率的計算方法求解即可.【詳解】∵第4次拋擲一枚均勻的硬幣時,正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【點睛】此題考查了概率公式的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.18、【解析】

根據(jù)被開方式是非負數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為:.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當函數(shù)解析式是整式時,字母可取全體實數(shù);②當函數(shù)解析式是分式時,考慮分式的分母不能為0;③當函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1m.(1)1.5m.【解析】

(1)由題意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【詳解】解:(1)在Rt△DEF中,由題意知ED=1.6m,BD=1m,DF==1.答:DF長為1m.(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1?sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6?cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E點離墻面AB的最遠距離為1.5m.【點睛】本題主要考查三角函數(shù)的知識,牢記公式并靈活運用是解題的關鍵。20、x≥.【解析】

根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.【詳解】2(2﹣3x)﹣3(x﹣1)≤6,4﹣6x﹣3x+3≤6,﹣6x﹣3x≤6﹣4﹣3,﹣9x≤﹣1,x≥.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.21、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.證明EC=AC,構建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當x=﹣=1時,EC的長最小,此時EC=18,∴AC=EC=9,∴AC的最小值為9.【點睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,學會構建二次函數(shù)解決最值問題,屬于中考壓軸題.22、建筑物的高度為.建筑物的高度為.【解析】分析:過點D作DE⊥AB于于E,則DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解決問題.詳解:過點D作DE⊥AB于于E,則DE=BC=60m,在Rt△ABC中,tan53°==,∴AB=80(m).在Rt△ADE中,tan37°==,∴AE=45(m),∴BE=CD=AB﹣AE=35(m).答:兩座建筑物的高度分別為80m和35m.點睛:本題考查的是解直角三角形的應用﹣仰角俯角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.23、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】

(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據(jù)題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)當點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.【點睛】本題主要考查了二次函數(shù)與幾何圖形的綜合應用,掌握相關幾何圖形的性質(zhì)和二次函數(shù)的性質(zhì)是解題的關鍵.24、(1)200;(2)答案見解析;(3).【解析】

(1)由題意得:這次調(diào)查中,一共調(diào)查的學生數(shù)為:40÷20%=200(名);(2)根據(jù)題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數(shù)為:200×30%=60(名);則可補全統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與一人是喜歡跳繩、一人是喜歡足球的學生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據(jù)題意得:這次調(diào)查中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論