版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古自治區(qū)普通高中數(shù)學高一下期末學業(yè)質量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,則()A. B. C. D.2.已知角的終邊經(jīng)過點,則的值是()A. B. C. D.3.下列函數(shù)中是偶函數(shù)且最小正周期為的是()A. B.C. D.4.函數(shù),若方程恰有三個不同的解,記為,則的取值范圍是()A. B. C. D.5.不等式的解集為,則實數(shù)的值為()A. B.C. D.6.函數(shù)的最小正周期是()A. B. C. D.7.甲、乙兩位射擊運動員的5次比賽成績(單位:環(huán))如莖葉圖所示,若兩位運動員平均成績相同,則成績較穩(wěn)定(方差較小)的那位運動員成績的方差為A.2 B.4 C.6 D.88.設是等差數(shù)列的前項和,若,則A. B. C. D.9.圓心在(-1,0),半徑為的圓的方程為()A. B.C. D.10.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.若則的最小值是__________.12.空間一點到坐標原點的距離是_______.13.若數(shù)據(jù)的平均數(shù)為,則____________.14.方程在區(qū)間上的解為___________.15.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.16.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,已知向量,.(1)求證:且;(2)設向量,,且,求實數(shù)的值.18.已知點,,動點滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結QH并延長交C于點R.(i)設O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時直線l的方程.19.已知的三個內角,,的對邊分別為,,,函數(shù),且當時,取最大值.(1)若關于的方程,有解,求實數(shù)的取值范圍;(2)若,且,求的面積.20.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達式,并用數(shù)學歸納法證明.21.已知直線l過點(1,3),且在y軸上的截距為1.
(1)求直線l的方程;
(2)若直線l與圓C:(x-a)2+(y+a)2=5相切,求實數(shù)a的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由題意可得,即,則,所以,即,也即,所以,應選答案D.點睛:解答本題的關鍵是借助題設中的條件獲得,進而得到,求得,從而求出使得問題獲解.2、D【解析】
首先計算出,根據(jù)三角函數(shù)定義可求得正弦值和余弦值,從而得到結果.【詳解】由三角函數(shù)定義知:,,則:本題正確選項:【點睛】本題考查任意角三角函數(shù)的求解問題,屬于基礎題.3、A【解析】
本題首先可將四個選項都轉化為的形式,然后對四個選項的奇偶性以及周期性依次進行判斷,即可得出結果.【詳解】中,函數(shù),是偶函數(shù),周期為;中,函數(shù)是奇函數(shù),周期;中,函數(shù),是非奇非偶函數(shù),周期;中,函數(shù)是偶函數(shù),周期.綜上所述,故選A.【點睛】本題考查對三角函數(shù)的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數(shù)滿足,對于函數(shù),其最小正周期為,考查化歸與轉化思想,是中檔題.4、D【解析】
由方程恰有三個不同的解,作出的圖象,確定,的取值范圍,得到的對稱性,利用數(shù)形結合進行求解即可.【詳解】設
作出函數(shù)的圖象如圖:由
則當
時
,,
即函數(shù)的一條對稱軸為
,要使方程恰有三個不同的解,則
,
此時
,
關于
對稱,則
當
,即
,則
則
的取值范圍是,選D.【點睛】本題主要考查了方程與函數(shù),數(shù)學結合是解決本題的關鍵,數(shù)學結合也是數(shù)學中比較重要的一種思想方法.5、C【解析】
不等式的解集為,為方程的兩根,則根據(jù)根與系數(shù)關系可得,.故選C.考點:一元二次不等式;根與系數(shù)關系.6、C【解析】
根據(jù)三角函數(shù)的周期公式,進行計算,即可求解.【詳解】由角函數(shù)的周期公式,可得函數(shù)的周期,又由絕對值的周期減半,即為最小正周期為,故選C.【點睛】本題主要考查了三角函數(shù)的周期的計算,其中解答中熟記余弦函數(shù)的圖象與性質是解答的關鍵,著重考查了計算與求解能力,屬于基礎題.7、A【解析】
根據(jù)平均數(shù)相同求出x的值,再根據(jù)方差的定義計算即可.【詳解】根據(jù)莖葉圖中的數(shù)據(jù)知,甲、乙二人的平均成績相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均數(shù)為=90;根據(jù)莖葉圖中的數(shù)據(jù)知甲的成績波動性小,較為穩(wěn)定(方差較小),所以甲成績的方差為s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故選A.【點睛】莖葉圖的優(yōu)點是保留了原始數(shù)據(jù),便于記錄及表示,能反映數(shù)據(jù)在各段上的分布情況.莖葉圖不能直接反映總體的分布情況,這就需要通過莖葉圖給出的數(shù)據(jù)求出數(shù)據(jù)的數(shù)字特征,進一步估計總體情況.8、A【解析】,,選A.9、A【解析】
根據(jù)圓心和半徑可直接寫出圓的標準方程.【詳解】圓心為(-1,0),半徑為,則圓的方程為故選:A【點睛】本題考查圓的標準方程的求解,屬于簡單題.10、B【解析】
將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)對數(shù)相等得到,利用基本不等式求解的最小值得到所求結果.【詳解】則,即由題意知,則,則當且僅當,即時取等號本題正確結果:【點睛】本題考查基本不等式求解和的最小值問題,關鍵是能夠利用對數(shù)相等得到的關系,從而構造出符合基本不等式的形式.12、【解析】
直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學運算能力.13、【解析】
根據(jù)求平均數(shù)的公式,得到關于的方程,求得.【詳解】由題意得:,解得:,故填:.【點睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.14、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數(shù)求值【名師點睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.15、2【解析】
由三角函數(shù)圖象,利用三角函數(shù)的性質,求得函數(shù)的解析式,即可求解的值,得到答案.【詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應用,其中解答中熟記三角函數(shù)的圖象與性質,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)根據(jù)向量的坐標求出向量模的方法以及向量的數(shù)量積即可求解.(2)根據(jù)向量垂直,可得數(shù)量積等于,進而解方程即可求解.【詳解】(1)證明:,,所以,因為,所以;(2)因為,所以,由(1)得:所以,解得.【點睛】本題考查了向量坐標求向量的模以及向量數(shù)量積的坐標表示,屬于基礎題.18、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解析】
(1)根據(jù)題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點坐標,表示出QH直線方程,采用點到直線距離公式求解;利用圓的幾何關系,表示出三角形的底和高,再結合函數(shù)最值問題進行求解【詳解】(1)由及兩點距離公式,有,化簡整理得,.所以曲線C的方程為;(2)(i)設直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當時.,所以,(ii)過O作于D,則D為QR中點,且由(i)知,,,又由,故的面積,由,有,所以,當且僅當時,等號成立,且此時由(i)有,即.綜上,的面積最大值為的面積最大值為,且當面積最大時直線的方程為.【點睛】直線與圓的綜合類題型常采用點到直線距離公式、圓內構造的直角三角形,將代數(shù)問題與幾何問題進行有效結合,可大大降低解題難度.19、(1);(2).【解析】
(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結合已知可得:,求得:時,,問題得解.(2)利用正弦定理可得:,結合可得:,對邊利用余弦定理可得:,結合已知整理得:,再利用三角形面積公式計算得解.【詳解】解:(1).因為在處取得最大值,所以,,即.因為,所以,所以.因為,所以所以,因為關于的方程有解,所以的取值范圍為.(2)因為,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.【點睛】本題主要考查了兩角和、差的正弦公式應用,還考查了三角函數(shù)的性質及方程與函數(shù)的關系,還考查了正弦定理、余弦定理的應用及三角形面積公式,考查計算能力及轉化能力,屬于中檔題.20、(1),,;(2)猜想,證明見解析.【解析】
(1)利用遞推公式可計算出、、的值;(2)根據(jù)數(shù)列的前四項可猜想出,然后利用數(shù)學歸納法即可證明出猜想成立.【詳解】(1),,則,,;(2)猜想,下面利用數(shù)學歸納法證明.假設當時成立,即,那么當時,,這說明當時,猜想也成立.由歸納原理可知,.【點睛】本題考查利用數(shù)列遞推公式寫出數(shù)列中的項,同時也考查了利用數(shù)學歸納法證明數(shù)列通項公式,考查計算能力與推理能力,屬于中等題.21、(1)y=2x+1;(2)a=-2或【解析】
(1)求得直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版UPS設備質保與支持服務協(xié)議版B版
- 專業(yè)技術服務勞務協(xié)議(2024版)版B版
- 2024年綠色屋頂設計與施工合同范本3篇
- 2024房地產(chǎn)融資合同范本
- 【放射科】精準醫(yī)療幕后的先鋒團隊
- 11-1《諫逐客書 》(說課稿)-2024-2025學年高一語文下學期同步教學說課稿專輯(統(tǒng)編版必修下冊)
- 福建省南平市塔前中學2022年高二數(shù)學理聯(lián)考試題含解析
- 2024文化石礦山開采及加工合作合同范本3篇
- 雙十一旅行新品盛宴
- 2024港口物流信息化建設合同
- 化學-山東省濰坊市、臨沂市2024-2025學年度2025屆高三上學期期末質量檢測試題和答案
- 領導學 課件全套 孫健 第1-9章 領導要素- 領導力開發(fā)
- 2024-2025學年七年級上學期語文期末考前押題卷(統(tǒng)編版2024+含答案)
- 土建定額培訓課件
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之13:“6策劃-6.2創(chuàng)新目標及其實現(xiàn)的策劃”(雷澤佳編制-2025B0)
- 2024年保護環(huán)境的建議書范文(33篇)
- 2025新譯林版英語七年級下單詞默寫表
- 退休人員公益活動合作合同
- 四年級數(shù)學(四則混合運算帶括號)計算題專項練習與答案
- 急診創(chuàng)傷疼痛護理
- 2022年期貨從業(yè)資格《期貨基礎知識》考試題庫(含典型題)
評論
0/150
提交評論