




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省朝陽市2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣12.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.43.北京故宮的占地面積達到720000平方米,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米4.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h5.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.16.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當(dāng)點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或7.在聯(lián)歡會上,甲、乙、丙3人分別站在不在同一直線上的三點A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點 B.重心 C.內(nèi)心 D.外心8.-的立方根是()A.-8 B.-4 C.-2 D.不存在9.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結(jié)論錯誤的是()A. B. C. D.10.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標(biāo)為(10,8),則點E的坐標(biāo)為.12.如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉(zhuǎn)30°,交函數(shù)y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.13.一個凸邊形的內(nèi)角和為720°,則這個多邊形的邊數(shù)是__________________14.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.15.如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標(biāo)為(﹣2,﹣3),則k的值為_____.16.如圖,10塊相同的長方形墻磚拼成一個長方形,設(shè)長方形墻磚的長為x厘米,則依題意列方程為_________.17.為增強學(xué)生身體素質(zhì),提高學(xué)生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.三、解答題(共7小題,滿分69分)18.(10分)某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?19.(5分)(2017四川省內(nèi)江市)小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:(1)這項被調(diào)查的總?cè)藬?shù)是多少人?(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.20.(8分)計算.21.(10分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.22.(10分)如圖,安徽江淮集團某部門研制了繪圖智能機器人,該機器人由機座、手臂和末端操作器三部分組成,底座直線且,手臂,末端操作器,直線.當(dāng)機器人運作時,,求末端操作器節(jié)點到地面直線的距離.(結(jié)果保留根號)23.(12分)如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.24.(14分)一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當(dāng)x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關(guān)鍵.2、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖3、D【解析】試題分析:把一個數(shù)記成a×10n(1≤a<10,n整數(shù)位數(shù)少1)的形式,叫做科學(xué)記數(shù)法.∴此題可記為1.2×105平方米.考點:科學(xué)記數(shù)法4、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B5、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.6、A【解析】
根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當(dāng)點D與B重合時,M與F重合,當(dāng)點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當(dāng)時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關(guān)鍵.7、D【解析】
為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.【詳解】∵三角形的三條垂直平分線的交點到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點最適當(dāng).故選D.【點睛】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識解決實際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關(guān)鍵.8、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.9、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.10、D【解析】
直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、(10,3)【解析】
根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標(biāo).【詳解】∵四邊形AOCD為矩形,D的坐標(biāo)為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標(biāo)為(10,3).12、-3【解析】
作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設(shè)A點坐標(biāo)為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到3-=(-3a+a),求出a=1,確定A點坐標(biāo)為(3,-),然后把A(3,-)代入函數(shù)y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設(shè)A點坐標(biāo)為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉(zhuǎn)30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標(biāo)為(3,-),而點A在函數(shù)y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數(shù)綜合題:點在反比例函數(shù)圖象上,則點的橫縱坐標(biāo)滿足其解析式;利用勾股定理、旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)進行線段的轉(zhuǎn)換與計算.13、1【解析】
設(shè)這個多邊形的邊數(shù)是n,根據(jù)多邊形的內(nèi)角和公式:,列方程計算即可.【詳解】解:設(shè)這個多邊形的邊數(shù)是n根據(jù)多邊形內(nèi)角和公式可得解得.故答案為:1.【點睛】此題考查的是根據(jù)多邊形的內(nèi)角和,求邊數(shù),掌握多邊形內(nèi)角和公式是解決此題的關(guān)鍵.14、1【解析】
由兩角對應(yīng)相等可得△BAD∽△CED,利用對應(yīng)邊成比例即可得兩岸間的大致距離AB的長.【詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【點睛】本題主要考查了相似三角形的應(yīng)用,用到的知識點為:兩角對應(yīng)相等的兩三角形相似;相似三角形的對應(yīng)邊成比例.15、1或﹣1【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關(guān)鍵是判斷出S四邊形CEOF=S四邊形HAGO.16、x+x=75.【解析】試題解析:設(shè)長方形墻磚的長為x厘米,
可得:x+x=75.17、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)111,51;(2)11.【解析】
(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)在獨立完成面積為411m2區(qū)域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)這次的綠化總費用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)題意得:解得:x=51,經(jīng)檢驗x=51是原方程的解,則甲工程隊每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊每天能完成綠化的面積分別是111m2、51m2;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應(yīng)安排甲隊工作11天.19、(1)50;(2)108°;(3).【解析】分析:(1)根據(jù)B組的人數(shù)和所占的百分比,即可求出這次被調(diào)查的總?cè)藬?shù),從而補全統(tǒng)計圖;用360乘以A組所占的百分比,求出A組的扇形圓心角的度數(shù),再用總?cè)藬?shù)減去A、B、D組的人數(shù),求出C組的人數(shù);(2)畫出樹狀圖,由概率公式即可得出答案.本題解析:解:(1)調(diào)查的總?cè)藬?shù)是:19÷38%=50(人).C組的人數(shù)有50-15-19-4=12(人),補全條形圖如圖所示.(2)畫樹狀圖如下.共有12種等可能的結(jié)果,恰好選中甲的結(jié)果有6種,∴P(恰好選中甲)=.點睛:本題考查了列表法與樹狀圖、條形統(tǒng)計圖的綜合運用.熟練掌握畫樹狀圖法,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.20、【解析】分析:先計算,再做除法,結(jié)果化為整式或最簡分式.詳解:.點睛:本題考查了分式的混合運算.解題過程中注意運算順序.解決本題亦可先把除法轉(zhuǎn)化成乘法,利用乘法對加法的分配律后再求和.21、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當(dāng)點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當(dāng)點B′在點D右邊時,半圓交直線CD于點D、B′.∴當(dāng)半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷凍飲品行業(yè)人才培養(yǎng)與職業(yè)發(fā)展考核試卷
- 品牌聲音與品牌形象的協(xié)同發(fā)展考核試卷
- 2025年中國PPA塑膠原料數(shù)據(jù)監(jiān)測研究報告
- 2025年中國PP-R管材數(shù)據(jù)監(jiān)測研究報告
- 2025年中國L型收縮包裝機數(shù)據(jù)監(jiān)測研究報告
- 2025年中國EVA熱壓眼鏡盒數(shù)據(jù)監(jiān)測報告
- 2025年中國BOPP啞光膜數(shù)據(jù)監(jiān)測報告
- 2025年中國21孔硬膠圈數(shù)據(jù)監(jiān)測報告
- 2025至2030年中國黃花梨高靠背椅市場分析及競爭策略研究報告
- 2025至2030年中國雪梅肉市場分析及競爭策略研究報告
- 運輸公司交通安全培訓(xùn)課件
- 2025年陜西省中考數(shù)學(xué)試題(解析版)
- 《康復(fù)治療學(xué)專業(yè)畢業(yè)實習(xí)》教學(xué)大綱
- 北師大版7年級數(shù)學(xué)下冊期末真題專項練習(xí) 03 計算題(含答案)
- 職業(yè)衛(wèi)生管理制度和操作規(guī)程標(biāo)準(zhǔn)版
- 小學(xué)信息技術(shù)四年級下冊教案(全冊)
- 河道保潔船管理制度
- 【增程式電動拖拉機驅(qū)動系統(tǒng)總體設(shè)計方案計算1900字】
- 2025年重慶市中考物理試卷真題(含標(biāo)準(zhǔn)答案)
- 2025至2030中國云計算行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 高中家長會 共筑夢想,攜手未來課件-高二下學(xué)期期末家長會
評論
0/150
提交評論