2025年中考數(shù)學(xué)專(zhuān)題58 二次函數(shù)中的面積問(wèn)題(原卷版)_第1頁(yè)
2025年中考數(shù)學(xué)專(zhuān)題58 二次函數(shù)中的面積問(wèn)題(原卷版)_第2頁(yè)
2025年中考數(shù)學(xué)專(zhuān)題58 二次函數(shù)中的面積問(wèn)題(原卷版)_第3頁(yè)
2025年中考數(shù)學(xué)專(zhuān)題58 二次函數(shù)中的面積問(wèn)題(原卷版)_第4頁(yè)
2025年中考數(shù)學(xué)專(zhuān)題58 二次函數(shù)中的面積問(wèn)題(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

例題精講例題精講求三角形的面積是幾何題中常見(jiàn)問(wèn)題之一,可用的方法也比較多,比如面積公式、割補(bǔ)、等積變形、三角函數(shù)甚至海倫公式,本文介紹的方法是在二次函數(shù)問(wèn)題中常用的一種求面積的方法——鉛垂法.【問(wèn)題描述】在平面直角坐標(biāo)系中,已知、、,求△ABC的面積.【分析】顯然對(duì)于這樣一個(gè)位置的三角形,面積公式并不太好用,割補(bǔ)倒是可以一試,比如這樣:構(gòu)造矩形ADEF,用矩形面積減去三個(gè)三角形面積即可得△ABC面積.這是在“補(bǔ)”,同樣可以采用“割”:此處AE+AF即為A、B兩點(diǎn)之間的水平距離.由題意得:AE+BF=6.下面求CD:根據(jù)A、B兩點(diǎn)坐標(biāo)求得直線AB解析式為:由點(diǎn)C坐標(biāo)(4,7)可得D點(diǎn)橫坐標(biāo)為4,將4代入直線AB解析式得D點(diǎn)縱坐標(biāo)為2,故D點(diǎn)坐標(biāo)為(4,2),CD=5,.【方法總結(jié)】作以下定義:A、B兩點(diǎn)之間的水平距離稱(chēng)為“水平寬”;過(guò)點(diǎn)C作x軸的垂線與AB交點(diǎn)為D,線段CD即為AB邊的“鉛垂高”.如圖可得:【解題步驟】(1)求A、B兩點(diǎn)水平距離,即水平寬;(2)過(guò)點(diǎn)C作x軸垂線與AB交于點(diǎn)D,可得點(diǎn)D橫坐標(biāo)同點(diǎn)C;(3)求直線AB解析式并代入點(diǎn)D橫坐標(biāo),得點(diǎn)D縱坐標(biāo);(4)根據(jù)C、D坐標(biāo)求得鉛垂高;(5)利用公式求得三角形面積.

例題精講例題精講【例1】.如圖,拋物線y=﹣x2﹣2x+3與x軸交于A(1,0),B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)P為拋物線第二象限上一動(dòng)點(diǎn),連接PB、PC、BC,求△PBC面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).變式訓(xùn)練【變1-1】.如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).(1)求拋物線的解析式和直線AC的解析式;(2)若點(diǎn)E是(1)中拋物線上的一個(gè)動(dòng)點(diǎn),且位于直線AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).【變1-2】.如圖,直線y=﹣x+2交y軸于點(diǎn)A,交x軸于點(diǎn)C,拋物線y=﹣+bx+c經(jīng)過(guò)點(diǎn)A,點(diǎn)C,且交x軸于另一點(diǎn)B.(1)求拋物線的解析式;(2)在直線AC上方的拋物線上有一點(diǎn)M,求四邊形ABCM面積的最大值及此時(shí)點(diǎn)M的坐標(biāo).【例2】.如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),過(guò)點(diǎn)A的直線l交拋物線于點(diǎn)C(2,m),點(diǎn)P是線段AC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)E.(1)求拋物線的解析式;(2)當(dāng)P在何處時(shí),△ACE面積最大.變式訓(xùn)練【變2-1】.如圖,拋物線y=ax2+bx+2交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),交y軸于點(diǎn)C.(1)求這個(gè)拋物線的函數(shù)表達(dá)式;(2)若點(diǎn)D的坐標(biāo)為(﹣1,0),點(diǎn)P為第二象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),求四邊形ADCP面積的最大值.【變2-2】.如圖,在平面直角坐標(biāo)系中,直線y=x﹣2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)y=+bx+c的圖象經(jīng)過(guò)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.(1)求二次函數(shù)的表達(dá)式;(2)連接DC,DB,設(shè)△BCD的面積為S,求S的最大值.1.如圖,拋物線y=﹣x2+x+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,若點(diǎn)P是線段BC上方的拋物線上一動(dòng)點(diǎn),當(dāng)△BCP的面積取得最大值時(shí),點(diǎn)P的坐標(biāo)是()A.(2,3) B.(,) C.(1,3) D.(3,2)2.如圖1,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線過(guò)B、C兩點(diǎn),連接AC.(1)求拋物線的解析式;(2)點(diǎn)P為拋物線上直線BC上方的一動(dòng)點(diǎn),求△PBC面積的最大值,并求出點(diǎn)P坐標(biāo);(3)若點(diǎn)Q為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),求△QAC周長(zhǎng)的最小值.3.如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).(1)求該拋物線的解析式;(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出△PBC面積的最大值.若沒(méi)有,請(qǐng)說(shuō)明理由.4.如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.(1)求拋物線的二次函數(shù)解析式:(2)若點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)以點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);(3)如圖2,點(diǎn)H是直線BC下方拋物線上的動(dòng)點(diǎn),連接BH,CH.當(dāng)△BCH的面積最大時(shí),求點(diǎn)H的坐標(biāo).5.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求二次函數(shù)解析式;(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形POP'C.是否存在點(diǎn)P,使四邊形POP'C為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.6.如圖,拋物線y=ax2+bx+c與坐標(biāo)軸交點(diǎn)分別為A(﹣1,0),B(3,0),C(0,2),作直線BC.(1)求拋物線的解析式;(2)點(diǎn)P為拋物線上第一象限內(nèi)一動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t(0<t<3),求△ABP的面積S與t的函數(shù)關(guān)系式;(3)條件同(2),若△ODP與△COB相似,求點(diǎn)P的坐標(biāo).7.如圖,拋物線y=ax2﹣3ax﹣4a(a<0)與x軸交于A,B兩點(diǎn),直線y=x+經(jīng)過(guò)點(diǎn)A,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)C,點(diǎn)C的橫坐標(biāo)為3,線段PQ在線段AB上移動(dòng),PQ=1,分別過(guò)點(diǎn)P、Q作x軸的垂線,交拋物線于E、F,交直線于D,G.(1)求拋物線的解析式;(2)當(dāng)四邊形DEFG為平行四邊形時(shí),求出此時(shí)點(diǎn)P、Q的坐標(biāo);(3)在線段PQ的移動(dòng)過(guò)程中,以D、E、F、G為頂點(diǎn)的四邊形面積是否有最大值,若有求出最大值,若沒(méi)有請(qǐng)說(shuō)明理由.8.如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點(diǎn)A(1,0),B(3,0),交y軸于點(diǎn)C.E是BC上一點(diǎn),PE∥y軸.(1)求這個(gè)二次函數(shù)的解析式;(2)點(diǎn)P是直線BC下方拋物線上的一動(dòng)點(diǎn),求BCP面積的最大值;(3)直線x=m分別交直線BC和拋物線于點(diǎn)M,N,當(dāng)m為何值時(shí)MN=BM,9.已知直線y=x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=﹣x2+mx+n經(jīng)過(guò)點(diǎn)A和點(diǎn)C.(1)求此拋物線的解析式;(2)在直線CA上方的拋物線上是否存在點(diǎn)D,使得△ACD的面積最大?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.10.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3交x軸于點(diǎn)A(﹣1,0),B(3,0),過(guò)點(diǎn)B的直線y==x﹣2交拋物線于點(diǎn)C.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)B,C重合),求△PBC面積的最大值.11.如圖,在平面直角坐標(biāo)系xOy中,已知直線y=x﹣2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過(guò)A、B兩點(diǎn)的拋物線y=ax2+bx+c與x軸交于另一點(diǎn)C(﹣1,0).(1)求拋物線的解析式;(2)在拋物線上是否存在一點(diǎn)P,使S△PAB=S△OAB?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)M為直線AB下方拋物線上一點(diǎn),點(diǎn)N為y軸上一點(diǎn),當(dāng)△MAB的面積最大時(shí),求MN+ON的最小值.12.直線y=﹣x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).(1)求這個(gè)二次函數(shù)的表達(dá)式;(2)若P是直線AB上方拋物線上一點(diǎn);①當(dāng)△PBA的面積最大時(shí),求點(diǎn)P的坐標(biāo);②在①的條件下,點(diǎn)P關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為Q,在直線AB上是否存在點(diǎn)M,使得直線QM與直線BA的夾角是∠QAB的兩倍?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.13.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣3,0)和點(diǎn)C(1,0).(1)求此拋物線的表達(dá)式.(2)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)△ABP的面積最大時(shí),求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.(3)設(shè)拋物線頂點(diǎn)為D,在(2)的條件下直線AB上確定一點(diǎn)H,使△DHP為等腰三角形,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)H的坐標(biāo).14.如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.(1)求拋物線及直線AC的函數(shù)關(guān)系式;(2)在對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使△ANM的周長(zhǎng)最?。舸嬖?,請(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.(3)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).15.如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).(1)求這個(gè)二次函數(shù)的解析式;(2)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.(3)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.16.已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.(1)求拋物線的解析式;(2)如圖1,拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)M,連接BC、CM.求△BCM的周長(zhǎng)及tan∠BCM的值;(3)如圖2,過(guò)點(diǎn)A的直線m∥BC,點(diǎn)P是直線BC上方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥m,垂足為點(diǎn)D,連接BD,CD,CP,PB.當(dāng)四邊形BDCP的面積最大時(shí),求點(diǎn)P的坐標(biāo)及四邊形BDCP面積的最大值.17.如圖1,在平面直角坐標(biāo)系xOy中,拋物線F1:y=x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0)和點(diǎn)B(1,0).(1)求拋物線F1的解析式;(2)如圖2,作拋物線F2,使它與拋物線F1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),請(qǐng)直接寫(xiě)出拋物線F2的解析式;(3)如圖3,將(2)中拋物線F2向上平移2個(gè)單位,得到拋物線F3,拋物線F1與拋物線F3相交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).①求點(diǎn)C和點(diǎn)D的坐標(biāo);②若點(diǎn)M,N分別為拋物線F1和拋物線F3上C,D之間的動(dòng)點(diǎn)(點(diǎn)M,N與點(diǎn)C,D不重合),試求四邊形CMDN面積的最大值.18.將拋物線y=ax2(a≠0)向左平移1個(gè)單位,再向上平移4個(gè)單位后,得到拋物線H:y=a(x﹣h)2+k.拋物線H與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.已知A(﹣3,0),點(diǎn)P是拋物線H上的一個(gè)動(dòng)點(diǎn).

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論