版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省洛南縣2025屆數(shù)學(xué)高一下期末經(jīng)典試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的對(duì)稱中心是()A. B. C. D.2.為了調(diào)查某工廠生產(chǎn)的一種產(chǎn)品的尺寸是否合格,現(xiàn)從500件產(chǎn)品中抽出10件進(jìn)行檢驗(yàn),先將500件產(chǎn)品編號(hào)為000,001,002,…,499,在隨機(jī)數(shù)表中任選一個(gè)數(shù)開(kāi)始,例如選出第6行第8列的數(shù)4開(kāi)始向右讀取(為了便于說(shuō)明,下面摘取了隨機(jī)數(shù)表附表1的第6行至第8行),即第一個(gè)號(hào)碼為439,則選出的第4個(gè)號(hào)碼是()A.548 B.443 C.379 D.2173.已知是定義在上的奇函數(shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上所有零點(diǎn)之和為()A.4 B.6 C.8 D.124.若實(shí)數(shù)滿足,則的最小值為()A.4 B.8 C.16 D.325.給出函數(shù)為常數(shù),且,,無(wú)論a取何值,函數(shù)恒過(guò)定點(diǎn)P,則P的坐標(biāo)是A. B. C. D.6.在中,角的對(duì)邊分別為,且,,,則的周長(zhǎng)為()A. B. C. D.7.圖1是我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)制的一幅“勾股圓方圖”(又稱“趙爽弦圖”),它是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形.受其啟發(fā),某同學(xué)設(shè)計(jì)了一個(gè)圖形,它是由三個(gè)全等的鈍角三角形與中間一個(gè)小正三角形拼成一個(gè)大正三角形,如圖2所示,若,,則線段的長(zhǎng)為()A.3 B.3.5 C.4 D.4.58.若關(guān)于的不等式的解集為,則的取值范圍是()A. B. C. D.9.把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是()A.對(duì)立事件B.互斥但不對(duì)立事件C.不可能事件D.必然事件10.在各項(xiàng)均為正數(shù)的等比數(shù)列中,公比.若,,,數(shù)列的前n項(xiàng)和為,則當(dāng)取最大值時(shí),n的值為()A.8 B.9 C.8或9 D.17二、填空題:本大題共6小題,每小題5分,共30分。11.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問(wèn)卷調(diào)查,為此將他們隨機(jī)編號(hào)為1,2,…,420,則抽取的21人中,編號(hào)在區(qū)間[241,360]內(nèi)的人數(shù)是______12.中,內(nèi)角,,所對(duì)的邊分別是,,,且,,則的值為_(kāi)_________.13.在四面體A-BCD中,AB=AC=DB=DC=BC,且四面體A-BCD的最大體積為,則四面體A-BCD外接球的表面積為_(kāi)_______.14.已知函數(shù)的圖象如下,則的值為_(kāi)_________.15.過(guò)點(diǎn)且與直線l:垂直的直線方程為_(kāi)_____.(請(qǐng)用一般式表示)16.為等比數(shù)列,若,則_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在直三棱柱中,,為的中點(diǎn),為的中點(diǎn).(1)求證:平面;(2)求證:.18.己知,,且函數(shù)的圖像上的任意兩條對(duì)稱軸之間的距離的最小值是.(1)求的值:(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時(shí)的的值.19.在中,,且.(1)求邊長(zhǎng);(2)求邊上中線的長(zhǎng).20.如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).(1)證明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.21.已知函數(shù),其中.解關(guān)于x的不等式;求a的取值范圍,使在區(qū)間上是單調(diào)減函數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,而函數(shù)的圖象可由的圖象向右平移一個(gè)單位,向下平移兩個(gè)單位得到,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,故選C.2、D【解析】
利用隨機(jī)數(shù)表寫(xiě)出每一個(gè)數(shù)字即得解.【詳解】第一個(gè)號(hào)碼為439,第二個(gè)號(hào)碼為495,第三個(gè)號(hào)碼為443,第四個(gè)號(hào)碼為217.故選:D【點(diǎn)睛】本題主要考查隨機(jī)數(shù)表,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平.3、C【解析】
根據(jù)函數(shù)的奇偶性和對(duì)稱性,判斷出函數(shù)的周期,由此畫(huà)出的圖像.由化簡(jiǎn)得,畫(huà)出的圖像,由與圖像的交點(diǎn)以及對(duì)稱性,求得函數(shù)在區(qū)間上所有零點(diǎn)之和.【詳解】由于,故是函數(shù)的對(duì)稱軸,由于為奇函數(shù),故函數(shù)是周期為的周期函數(shù),當(dāng)時(shí),,由此畫(huà)出的圖像如下圖所示.令,注意到,故上述方程可化為,畫(huà)出的圖像,由圖可知與圖像都關(guān)于點(diǎn)對(duì)稱,它們兩個(gè)函數(shù)圖像的個(gè)交點(diǎn)也關(guān)于點(diǎn)對(duì)稱,所以函數(shù)在區(qū)間上所有零點(diǎn)之和為.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性、對(duì)稱性以及周期性,考查函數(shù)零點(diǎn)問(wèn)題的求解策略,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.4、B【解析】
由可以得到,利用基本不等式可求最小值.【詳解】因?yàn)?,故,因?yàn)?,故,故,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為8,故選B.【點(diǎn)睛】應(yīng)用基本不等式求最值時(shí),需遵循“一正二定三相等”,如果原代數(shù)式中沒(méi)有積為定值或和為定值,則需要對(duì)給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時(shí)要關(guān)注取等條件的驗(yàn)證.5、D【解析】試題分析:因?yàn)楹氵^(guò)定點(diǎn),所以函數(shù)恒過(guò)定點(diǎn).故選D.考點(diǎn):指數(shù)函數(shù)的性質(zhì).6、C【解析】
根據(jù),得到,利用余弦定理,得到關(guān)于的方程,從而得到的值,得到的周長(zhǎng).【詳解】在中,由正弦定理因?yàn)?,所以因?yàn)?,,所以由余弦定理得即,解得,所以所以的周長(zhǎng)為.故選C.【點(diǎn)睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡(jiǎn)單題.7、A【解析】
設(shè),可得,求得,在中,運(yùn)用余弦定理,解方程可得所求值.【詳解】設(shè),可得,且,在中,可得,即為,化為,解得舍去),故選.【點(diǎn)睛】本題考查三角形的余弦定理,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)對(duì)數(shù)的性質(zhì)列不等式,根據(jù)一元二次不等式恒成立時(shí),判別式和開(kāi)口方向的要求列不等式組,解不等式組求得的取值范圍.【詳解】由得,即恒成立,由于時(shí),在上不恒成立,故,解得.故選:C.【點(diǎn)睛】本小題主要考查對(duì)數(shù)函數(shù)的性質(zhì),考查一元二次不等式恒成立的條件,屬于基礎(chǔ)題.9、B【解析】試題分析:把黑、紅、白3張紙牌分給甲、乙、丙三人,事件“甲分得紅牌”與“乙分得紅牌”不可能同時(shí)發(fā)生,是互斥事件,但除了事件“甲分得紅牌”與“乙分得紅牌”還有“丙分得紅牌”,所以這兩者不是對(duì)立事件,答案為B.考點(diǎn):互斥與對(duì)立事件.10、C【解析】∵為等比數(shù)列,公比為,且∴∴,則∴∴∴,∴數(shù)列是以4為首項(xiàng),公差為的等差數(shù)列∴數(shù)列的前項(xiàng)和為令當(dāng)時(shí),∴當(dāng)或9時(shí),取最大值.故選C點(diǎn)睛:(1)在解決等差數(shù)列、等比數(shù)列的運(yùn)算問(wèn)題時(shí),有兩個(gè)處理思路:一是利用基本量將多元問(wèn)題簡(jiǎn)化為一元問(wèn)題;二是利用等差數(shù)列、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差數(shù)列、等比數(shù)列問(wèn)題的快捷方便的工具;(2)求等差數(shù)列的前項(xiàng)和最值的兩種方法:①函數(shù)法:利用等差數(shù)列前項(xiàng)和的函數(shù)表達(dá)式,通過(guò)配方或借助圖象求二次函數(shù)最值的方法求解;②鄰項(xiàng)變號(hào)法:當(dāng)時(shí),滿足的項(xiàng)數(shù)使得取得最大值為;當(dāng)時(shí),滿足的項(xiàng)數(shù)使得取得最小值為.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】試題分析:由題意得,編號(hào)為,由得共6個(gè).考點(diǎn):系統(tǒng)抽樣12、4【解析】
利用余弦定理變形可得,從而求得結(jié)果.【詳解】由余弦定理得:本題正確結(jié)果:【點(diǎn)睛】本題考查余弦定理的應(yīng)用,關(guān)鍵是能夠熟練應(yīng)用的變形,屬于基礎(chǔ)題.13、【解析】
當(dāng)面ABC面與BCD垂直時(shí),四面體A-BCD的體積最大,根據(jù)最大體積為求出四面體的邊長(zhǎng),又△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心位于的中點(diǎn),從而得到半徑,即可求解.【詳解】如圖所示:當(dāng)面ABC面與BCD垂直時(shí),四面體A-BCD的體積最大為,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心為的中點(diǎn),又,解得,,,所以四面體A-BCD外接球的半徑故四面體A-BCD外接球的表面積為.【點(diǎn)睛】本題考查多面體的外接圓及相關(guān)計(jì)算,多面體外接圓問(wèn)題關(guān)鍵在圓心和半徑.14、【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出,由半個(gè)周期求出,最后將特殊點(diǎn)的坐標(biāo)求代入解析式,即可求得的值.【詳解】解:由圖象可得,,得.,將點(diǎn)代入函數(shù)解析式,得,,,又因?yàn)?所以故答案為:【點(diǎn)睛】本題考查由的部分圖象確定其解析式.(1)根據(jù)函數(shù)的最高點(diǎn)的坐標(biāo)確定(2)根據(jù)函數(shù)零點(diǎn)的坐標(biāo)確定函數(shù)的周期求(3)利用最值點(diǎn)的坐標(biāo)同時(shí)求的取值,即可得到函數(shù)的解析式.15、【解析】
與直線垂直的直線方程可設(shè)為,再將點(diǎn)的坐標(biāo)代入運(yùn)算即可得解.【詳解】解:與直線l:垂直的直線方程可設(shè)為,又該直線過(guò)點(diǎn),則,則,即點(diǎn)且與直線l:垂直的直線方程為,故答案為:.【點(diǎn)睛】本題考查了與已知直線垂直的直線方程的求法,屬基礎(chǔ)題.16、【解析】
將這兩式中的量全部用表示出來(lái),正好有兩個(gè)方程,兩個(gè)未知數(shù),解方程組即可求出?!驹斀狻肯喈?dāng)于,相當(dāng)于,上面兩式相除得代入就得,【點(diǎn)睛】基本量法是解決數(shù)列計(jì)算題最重要的方法,即將條件全部用首項(xiàng)和公比表示,列方程,解方程即可求得。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)連、相交于點(diǎn),證明四邊形為平行四邊形,得到,證明平面(2)證明平面推出【詳解】證明:(1)如圖,連、相交于點(diǎn),,,,,,,∴四邊形為平行四邊形,,平面,平面,平面,…(2)連因?yàn)槿庵侵比庵酌?,平面,,,,,,平面,平面?【點(diǎn)睛】本題考查了線面平行,線線垂直,線面垂直,意在考查學(xué)生的空間想象能力.18、(1)1;(1)此時(shí),此時(shí)【解析】
(1)由條件利用兩角和差的正弦公式化簡(jiǎn)f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,從而求得f()的值.(1)由條件利用函數(shù)y=Asin(ωx+)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)正弦函數(shù)的定義域和值域求得g(x)在x∈[]上的最值.【詳解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根據(jù),可得=﹣,故.(1)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,得到函數(shù)y=g(x)=的圖象.∵x∈[],∴,當(dāng)時(shí),即時(shí),g(x)取得最大值為;當(dāng)時(shí),即時(shí),g(x)取得最小值為2.【點(diǎn)睛】本題主要考查兩角和差的正弦公式,由函數(shù)y=Asin(ωx+)的部分圖象求解析式,函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.19、(1);(2).【解析】
(1)利用同角的三角函數(shù)關(guān)系,可以求出的值,利用三角形內(nèi)角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出長(zhǎng);(2)利用余弦定理可以求出的長(zhǎng),進(jìn)而可以求出的長(zhǎng),然后在中,再利用余弦定理求出邊上中線的長(zhǎng).【詳解】(1),,由正弦定理可知中:(2)由余弦定理可知:,是的中點(diǎn),故,在中,由余弦定理可知:【點(diǎn)睛】本題考查了正弦定理、余弦定理、同角的三角函數(shù)關(guān)系、以及三角形內(nèi)角和定理,考查了數(shù)學(xué)運(yùn)算能力.20、(1)見(jiàn)解析;(2).【解析】
(1)利用三角形中位線和可證得,證得四邊形為平行四邊形,進(jìn)而證得,根據(jù)線面平行判定定理可證得結(jié)論;(2)以菱形對(duì)角線交點(diǎn)為原點(diǎn)可建立空間直角坐標(biāo)系,通過(guò)取中點(diǎn),可證得平面,得到平面的法向量;再通過(guò)向量法求得平面的法向量,利用向量夾角公式求得兩個(gè)法向量夾角的余弦值,進(jìn)而可求得所求二面角的正弦值.【詳解】(1)連接,,分別為,中點(diǎn)為的中位線且又為中點(diǎn),且且四邊形為平行四邊形,又平面,平面平面(2)設(shè),由直四棱柱性質(zhì)可知:平面四邊形為菱形則以為原點(diǎn),可建立如下圖所示的空間直角坐標(biāo)系:則:,,,D(0,-1,0)取中點(diǎn),連接,則四邊形為菱形且為等邊三角形又平面,平面平面,即平面為平面的一個(gè)法向量,且設(shè)平面的法向量,又,,令,則,二面角的正弦值為:【點(diǎn)睛】本題考查線面平行關(guān)系
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南衛(wèi)生健康職業(yè)學(xué)院《演講與辯論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度私人車輛轉(zhuǎn)讓及綠色環(huán)保認(rèn)證合同3篇
- 2025版金融風(fēng)險(xiǎn)評(píng)估與管理服務(wù)協(xié)議2篇
- 海南師范大學(xué)《歐洲現(xiàn)代主義建筑選讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度影視作品制作擔(dān)保合同3篇
- 二零二五年度拆遷項(xiàng)目綜合評(píng)估居間代理服務(wù)協(xié)議書(shū)模板2篇
- 2025年度版權(quán)購(gòu)買(mǎi)合同屬性為圖書(shū)出版權(quán)2篇
- 二零二五年度智能辦公家具銷售與服務(wù)協(xié)議3篇
- 2025年出口貿(mào)易融資續(xù)約合同范本3篇
- 幼兒園財(cái)務(wù)管理制度細(xì)則模版(2篇)
- SQL Server 2000在醫(yī)院收費(fèi)審計(jì)的運(yùn)用
- 北師大版小學(xué)三年級(jí)數(shù)學(xué)下冊(cè)課件(全冊(cè))
- 工程臨時(shí)用工確認(rèn)單
- 簡(jiǎn)約清新大氣餐飲行業(yè)企業(yè)介紹模板課件
- 氮?dú)庵舷⑹鹿拾咐?jīng)驗(yàn)分享
- 某公司年度生產(chǎn)經(jīng)營(yíng)計(jì)劃書(shū)
- 廠房租賃合同標(biāo)準(zhǔn)版(通用10篇)
- 《教育心理學(xué)》教材
- 易制毒化學(xué)品安全管理制度(3篇)
- 建設(shè)單位業(yè)主方工程項(xiàng)目管理流程圖
- 斷裂力學(xué)——2Griffith理論(1)
評(píng)論
0/150
提交評(píng)論