2025屆吉林省汪清縣四中數(shù)學(xué)高一下期末檢測模擬試題含解析_第1頁
2025屆吉林省汪清縣四中數(shù)學(xué)高一下期末檢測模擬試題含解析_第2頁
2025屆吉林省汪清縣四中數(shù)學(xué)高一下期末檢測模擬試題含解析_第3頁
2025屆吉林省汪清縣四中數(shù)學(xué)高一下期末檢測模擬試題含解析_第4頁
2025屆吉林省汪清縣四中數(shù)學(xué)高一下期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆吉林省汪清縣四中數(shù)學(xué)高一下期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.2.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10記為數(shù)列,將可被5整除的三角形數(shù),按從小到大的順序組成一個新數(shù)列,可以推測:()A.1225 B.1275 C.2017 D.20183.已知數(shù)列{an}滿足a1=2A.2 B.-3 C.-124.將正整數(shù)按第組含個數(shù)分組:那么所在的組數(shù)為()A. B. C. D.5.下列四個函數(shù)中,既是上的增函數(shù),又是以為周期的偶函數(shù)的是()A. B. C. D.6.已知直線的傾斜角為,則()A. B. C. D.7.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.在正四棱柱中,,則點到平面的距離是()A. B. C. D.9.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡10.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.19二、填空題:本大題共6小題,每小題5分,共30分。11.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________12.等比數(shù)列的前項和為,若,,成等差數(shù)列,則其公比為_________.13.已知原點O(0,0),則點O到直線x+y+2=0的距離等于.14.若集合,,則集合________.15.若為銳角,,則__________.16.已知正實數(shù)滿足,則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了加強(qiáng)“平安校園”建設(shè),有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學(xué)校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務(wù)室.由于此警務(wù)室的后背靠墻,無需建造費(fèi)用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元.設(shè)屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當(dāng)左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價.(Ⅱ)現(xiàn)有乙工程隊也要參與此警務(wù)室的建造競標(biāo),其給出的整體報價為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標(biāo)成功,試求a18.已知,函數(shù)(其中),且圖象在軸右側(cè)的第一個最高點的橫坐標(biāo)為,并過點.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)增區(qū)間.19.年北京市進(jìn)行人口抽樣調(diào)查,隨機(jī)抽取了某區(qū)居民人,記錄他們的年齡,將數(shù)據(jù)分成組:,,,…,并整理得到如下頻率分布直方圖:(Ⅰ)從該區(qū)中隨機(jī)抽取一人,估計其年齡不小于的概率;(Ⅱ)估計該區(qū)居民年齡的中位數(shù)(精確到);(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,估計該區(qū)居民的平均年齡.20.在中,,,的對邊分別為,,,已知.(1)判斷的形狀;(2)若,,求.21.在平面直角坐標(biāo)系xOy中,曲線與x軸交于不同的兩點A,B,曲線Γ與y軸交于點C.(1)是否存在以AB為直徑的圓過點C?若存在,求出該圓的方程;若不存在,請說明理由;(2)求證:過A,B,C三點的圓過定點,并求出該定點的坐標(biāo).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.2、A【解析】

通過尋找規(guī)律以及數(shù)列求和,可得,然后計算,可得結(jié)果.【詳解】根據(jù)題意可知:則由…可得所以故選:A【點睛】本題考查不完全歸納法的應(yīng)用,本題難點在于找到,屬難題,3、D【解析】

先通過列舉找到數(shù)列的周期,再利用數(shù)列的周期求值.【詳解】由題得a2所以數(shù)列的周期為4,所以a2020故選:D【點睛】本題主要考查遞推數(shù)列和數(shù)列的周期,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、B【解析】

觀察規(guī)律,看每一組的最后一個數(shù)與組數(shù)的關(guān)系,可知第n組最后一個數(shù)是2+3+4+…..+n+1=,然后再驗證求解.【詳解】觀察規(guī)律,第一組最后一個數(shù)是2=2,第二組最后一個數(shù)是5=2+3,第三組最后一個數(shù)是9=2+3+4,……,依此,第n組最后一個數(shù)是2+3+4+…..+n+1=.當(dāng)時,,所以所在的組數(shù)為63.故選:B【點睛】本題主要考查了數(shù)列的遞推,還考查了推理論證的能力,屬于中檔題.5、C【解析】

本題首先可確定四個選項中的函數(shù)的周期性以及在區(qū)間上的單調(diào)性、奇偶性,然后根據(jù)題意即可得出結(jié)果.【詳解】A項:函數(shù)周期為,在上是增函數(shù),奇函數(shù);B項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);C項:函數(shù)周期為,在上是增函數(shù),偶函數(shù);D項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);綜上所述,故選C.【點睛】本題考查三角函數(shù)的周期性以及單調(diào)性,能否熟練的掌握正弦函數(shù)以及余弦函數(shù)的圖像性質(zhì)是解決本題的關(guān)鍵,考查推理能力,是簡單題.6、B【解析】

根據(jù)直線斜率與傾斜角的關(guān)系求解即可.【詳解】因為直線的傾斜角為,故直線斜率.故選:B【點睛】本題主要考查了直線的傾斜角與斜率的關(guān)系,屬于基礎(chǔ)題.7、A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題8、A【解析】

計算的面積,根據(jù)可得點到平面的距離.【詳解】中,,,∴的邊上的高為,∴,設(shè)到平面的距離為,則,又,∴,解得.故選A.【點睛】本題涉及點面距離的求法,點面距可以通過建立空間直角坐標(biāo)系來求得點面距離,或者尋找面面垂直,再直接過點做交線的垂線即可;當(dāng)點面距離不好求時,也可以根據(jù)等積法把點到平面的距離歸結(jié)為一個容易求得的幾何體的體積.9、B【解析】

概率的事件可以認(rèn)為是概率為的對立事件.【詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【點睛】本題考查對立事件,解題關(guān)鍵是掌握對立事件的概率性質(zhì):即對立事件的概率和為1.10、C【解析】

先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結(jié)果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負(fù)數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負(fù)數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運(yùn)算求解能力,求解時要注意等差數(shù)列性質(zhì)的合理運(yùn)用.12、【解析】試題分析:、、成等差數(shù)列考點:1.等差數(shù)列性質(zhì);2.等比數(shù)列通項公式13、【解析】

由點到直線的距離公式得:點O到直線x+y+2=0的距離等于,故答案為.14、【解析】由題意,得,,則.15、【解析】因為為銳角,,所以,.16、6【解析】

由題得,解不等式即得x+y的最小值.【詳解】由題得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值為6.當(dāng)且僅當(dāng)x=y=3時取等.故答案為:6【點睛】本題主要考查基本不等式求最值,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)4米時,28800元;(Ⅱ)0<a<12.25.【解析】

(Ⅰ)設(shè)甲工程隊的總造價為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設(shè)甲工程隊的總造價為y元,則y=3(300×2x+400×1800(x+16當(dāng)且僅當(dāng)x=16x,即即當(dāng)左右兩側(cè)墻的長度為4米時,甲工程隊的報價最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點睛】本題主要考查基本不等式的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.18、(1);(2).【解析】

(1)根據(jù)向量的數(shù)量積得,結(jié)合,即可求解;(2)令即可求得增區(qū)間.【詳解】(1)由題圖象在軸右側(cè)的第一個最高點的橫坐標(biāo)為,并過點所以,解得,,解得:,所以;(2)令函數(shù)的單調(diào)增區(qū)間為.【點睛】此題考查根據(jù)平面向量的數(shù)量積,求函數(shù)解析式,根據(jù)三角函數(shù)的頂點坐標(biāo)和曲線上的點的坐標(biāo)求參數(shù),利用整體代入法求單調(diào)區(qū)間.19、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(I)計算之間的頻率和,由此估計出年齡不小于的概率.(II)從左往右,計算出頻率之和為的位置,由此估計中中位數(shù).(III)用各組中點值乘以頻率人后相加,求得居民平均年齡的估計值.【詳解】解:(Ⅰ)設(shè)從該區(qū)中隨機(jī)抽取一人,估計其年齡不小于60為事件,所以該區(qū)中隨機(jī)抽取一人,估計其年齡不小于60的概率為.(Ⅱ)年齡在的累計頻率為,,所以估計中位數(shù)為.(Ⅲ)平均年齡為【點睛】本小題主要考查頻率分布直方圖的識別與應(yīng)用,考查頻率分布直方圖估計中位數(shù)和平均數(shù),考查運(yùn)算求解能力,屬于中檔題.20、(1)為直角三角形或等腰三角形(2)【解析】

(1)由正弦定理和題設(shè)條件,得,再利用三角恒等變換的公式,化簡得,進(jìn)而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【詳解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,則,則或,所以或,所以為直角三角形或等腰三角形.(2)因為,則為等腰三角形,從而,由余弦定理,得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運(yùn)用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運(yùn)用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運(yùn)用余弦定理求解.21、(1)存在,(2)證明見解析,圓方程恒過定點或【解析】

(1)將曲線Γ方程中的y=1,得x2﹣mx+2m=1.利用韋達(dá)定理求出C,通過坐標(biāo)化,求出m得到所求圓的方程.(2)設(shè)過A,B,C的圓P的方程為(x﹣a)2+(y﹣b)2=r2列出方程組利用圓系方程,推出圓P方程恒過定點即可.【詳解】由曲線Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.設(shè)A(x1,1),B(x2,1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論