版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省13市2025屆高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.2.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.83.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):x24568y3040t5070根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程為y=6.5x+17.5,則tA.40 B.50 C.60 D.704.某高中三個(gè)年級(jí)共有3000名學(xué)生,現(xiàn)采用分層抽樣的方法從高一、高二、高三年級(jí)的全體學(xué)生中抽取一個(gè)容量為30的樣本進(jìn)行視力健康檢查,若抽到的高一年級(jí)學(xué)生人數(shù)與高二年級(jí)學(xué)生人數(shù)之比為3∶2,抽到高三年級(jí)學(xué)生10人,則該校高二年級(jí)學(xué)生人數(shù)為()A.600 B.800 C.1000 D.12005.在中,是斜邊上的兩個(gè)動(dòng)點(diǎn),且,則的取值范圍為()A. B. C. D.6.直三棱柱ABC—A1B1C1中,BB1中點(diǎn)為M,BC中點(diǎn)為N,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與MN所成角的余弦值為A.1 B. C. D.07.已知在中,,則的形狀是A.銳角三角形 B.鈍角三角形C.等腰三角形 D.直角三角形8.在△ABC中,若a=2bsinA,則B為A. B. C.或 D.或9.如圖,,是半徑為2的圓周上的定點(diǎn),為圓周上的動(dòng)點(diǎn)且,,則圖中陰影區(qū)域面積的最大值為()A. B. C. D.10.已知是等差數(shù)列的前項(xiàng)和,.若對(duì)恒成立,則正整數(shù)構(gòu)成的集合是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,,則的最小值為__________.12.下列五個(gè)正方體圖形中,是正方體的一條對(duì)角線,點(diǎn)M,N,P分別為其所在棱的中點(diǎn),求能得出⊥面MNP的圖形的序號(hào)(寫出所有符合要求的圖形序號(hào))______13.在中,,,點(diǎn)為延長(zhǎng)線上一點(diǎn),,連接,則=______.14.和的等差中項(xiàng)為__________.15.已知無(wú)窮等比數(shù)列的首項(xiàng)為,公比為q,且,則首項(xiàng)的取值范圍是________.16.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.如圖,在三棱柱中,為正三角形,為的中點(diǎn),,,.(1)證明:平;(2)證明:平面平面.18.近年來(lái),我國(guó)自主研發(fā)的長(zhǎng)征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國(guó)在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進(jìn)劑的質(zhì)量為,去除推進(jìn)劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,假設(shè),,,是以為底的自然對(duì)數(shù),,.(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時(shí),求的值(精確到小數(shù)點(diǎn)后面1位).(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請(qǐng)問的最小值為多少(精確到小數(shù)點(diǎn)后面1位)?由此指出其實(shí)際意義.19.的內(nèi)角的對(duì)邊分別為,已知.(1)求角的大?。唬?)若為銳角三角形,且,求面積的取值范圍.20.2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計(jì)劃引進(jìn)一批新能源汽車制造設(shè)備,通過市場(chǎng)分析,全年需投入固定成本3000萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且,由市場(chǎng)調(diào)研知,每輛車售價(jià)6萬(wàn)元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.(1)求出2019年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額成本)(2)2019年產(chǎn)量為多少(百輛)時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).21.若關(guān)于的不等式對(duì)一切實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
通過成等比數(shù)列,可以列出一個(gè)等式,根據(jù)等差數(shù)列的性質(zhì),可以把該等式變成關(guān)于的方程,解這個(gè)方程即可.【詳解】因?yàn)槌傻缺葦?shù)列,所以有,又因?yàn)槭枪顬?的等差數(shù)列,所以有,故本題選B.【點(diǎn)睛】本題考查了等比中項(xiàng)的性質(zhì),考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.2、A【解析】,選A.3、C【解析】分析:由題意,求得這組熟記的樣本中心(x詳解:由題意,根據(jù)表中的數(shù)據(jù)可得x=2+4+5+6+85把(x,y)代入回歸直線的方程,得點(diǎn)睛:本題主要考查了回歸分析的初步應(yīng)用,其中熟記回歸直線的基本特征——回歸直線方程經(jīng)過樣本中心點(diǎn)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.4、B【解析】
根據(jù)題意可設(shè)抽到高一和高二年級(jí)學(xué)生人數(shù)分別為和,則,繼而算出抽到的各年級(jí)人數(shù),再根據(jù)分層抽樣的原理可以推得該校高二年級(jí)的人數(shù).【詳解】根據(jù)題意可設(shè)抽到高一和高二年級(jí)學(xué)生人數(shù)分別為和,則,即,所以高一年級(jí)和高二年級(jí)抽到的人數(shù)分別是12人和8人,則該校高二年級(jí)學(xué)生人數(shù)為人.故選:.【點(diǎn)睛】本題考查分層抽樣的方法,屬于容易題.5、A【解析】
可借助直線方程和平面直角坐標(biāo)系,代換出之間的關(guān)系,再結(jié)合向量的數(shù)量積公式進(jìn)行求解即可【詳解】如圖所示:設(shè)直線方程為:,,,由得,可設(shè),則,,,,當(dāng)時(shí),,故故選A【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)運(yùn)算,向量法在幾何中的應(yīng)用,屬于中檔題6、D【解析】
先找到直線異面直線AB1與MN所成角為∠,再通過解三角形求出它的余弦值.【詳解】由題得,所以∠就是異面直線AB1與MN所成角或補(bǔ)角.由題得,,因?yàn)?所以異面直線AB1與MN所成角的余弦值為0.故選:D【點(diǎn)睛】本題主要考查異面直線所成的角的求法,考查余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.7、D【解析】
利用正弦定理可將已知中的等號(hào)兩邊的“邊”轉(zhuǎn)化為它所對(duì)角的正弦,再利用余弦定理化簡(jiǎn)即得該三角形的形狀.【詳解】根據(jù)正弦定理,原式可變形為:所以整理得.故選.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.8、C【解析】,,則或,選C.9、D【解析】
由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,運(yùn)用扇形面積公式和三角形的面積公式,計(jì)算可得所求最大值.【詳解】由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,即有,到線段的距離為,,扇形的面積為,的面積為,,即有陰影區(qū)域的面積的最大值為.故選.【點(diǎn)睛】本題考查扇形面積公式和三角函數(shù)的恒等變換,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.10、A【解析】
先分析出,即得k的值.【詳解】因?yàn)橐驗(yàn)樗?所以,所以正整數(shù)構(gòu)成的集合是.故選A【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的最小值的求法,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、25【解析】
變形后,利用基本不等式可得.【詳解】當(dāng)且僅當(dāng),即,時(shí)取等號(hào).故答案為:25【點(diǎn)睛】本題考查了利用基本不等式求最值,屬于基礎(chǔ)題.12、①④⑤【解析】為了得到本題答案,必須對(duì)5個(gè)圖形逐一進(jìn)行判別.對(duì)于給定的正方體,l位置固定,截面MNP變動(dòng),l與面MNP是否垂直,可從正、反兩方面進(jìn)行判斷.在MN、NP、MP三條線中,若有一條不垂直l,則可斷定l與面MNP不垂直;若有兩條與l都垂直,則可斷定l⊥面MNP;若有l(wèi)的垂面∥面MNP,也可得l⊥面MNP.解法1作正方體ABCD-A1B1C1D1如附圖,與題設(shè)圖形對(duì)比討論.在附圖中,三個(gè)截面BA1D、EFGHKR和CB1D1都是對(duì)角線l(即AC1)的垂面.對(duì)比圖①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.對(duì)比圖②,由MN與面CB1D1相交,而過交點(diǎn)且與l垂直的直線都應(yīng)在面CBlDl內(nèi),所以MN不垂直于l,從而l不垂直于面MNP.對(duì)比圖③,由MP與面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.對(duì)比圖④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.對(duì)比圖⑤,面MNP與面EFGHKR重合,故l⊥面MNP.綜合得本題的答案為①④⑤.解法2如果記正方體對(duì)角線l所在的對(duì)角截面為.各圖可討論如下:在圖①中,MN,NP在平面上的射影為同一直線,且與l垂直,故l⊥面MNP.事實(shí)上,還可這樣考慮:l在上底面的射影是MP的垂線,故l⊥MP;l在左側(cè)面的射影是MN的垂線,故l⊥MN,從而l⊥面MNP.在圖②中,由MP⊥面,可證明MN在平面上的射影不是l的垂線,故l不垂直于MN.從而l不垂直于面MNP.在圖③中,點(diǎn)M在上的射影是l的中點(diǎn),點(diǎn)P在上的射影是上底面的內(nèi)點(diǎn),知MP在上的射影不是l的垂線,得l不垂直于面MNP.在圖④中,平面垂直平分線段MN,故l⊥MN.又l在左側(cè)面的射影(即側(cè)面正方形的一條對(duì)角線)與MP垂直,從而l⊥MP,故l⊥面MNP.在圖⑤中,點(diǎn)N在平面上的射影是對(duì)角線l的中點(diǎn),點(diǎn)M、P在平面上的射影分別是上、下底面對(duì)角線的4分點(diǎn),三個(gè)射影同在一條直線上,且l與這一直線垂直.從而l⊥面MNP.至此,得①④⑤為本題答案.13、.【解析】
由題意,畫出幾何圖形.由三線合一可求得,根據(jù)補(bǔ)角關(guān)系可求得.再結(jié)合余弦定理即可求得.【詳解】在中,,作,如下圖所示:由三線合一可知為中點(diǎn)則所以點(diǎn)為延長(zhǎng)線上一點(diǎn),則在中由余弦定理可得所以故答案為:【點(diǎn)睛】本題考查了等腰三角形性質(zhì),余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
設(shè)和的等差中項(xiàng)為,利用等差中項(xiàng)公式可得出的值.【詳解】設(shè)和的等差中項(xiàng)為,由等差中項(xiàng)公式可得,故答案為:.【點(diǎn)睛】本題考查等差中項(xiàng)的求解,解題時(shí)要充分利用等差中項(xiàng)公式來(lái)求解,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)極限存在得出,對(duì)分、和三種情況討論得出與之間的關(guān)系,可得出的取值范圍.【詳解】由于,則.①當(dāng)時(shí),則,;②當(dāng)時(shí),則,;③當(dāng)時(shí),,解得.綜上所述:首項(xiàng)的取值范圍是,故答案為:.【點(diǎn)睛】本題考查極限的應(yīng)用,要結(jié)合極限的定義得出公比的取值范圍,同時(shí)要對(duì)公比的取值范圍進(jìn)行分類討論,考查分類討論思想的應(yīng)用,屬于中等題.16、【解析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點(diǎn)睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】
(1)連結(jié)交于,連結(jié),先證明,再證明平;(2)取的中點(diǎn)為,連結(jié),,,先證明平面,再證明平面平面.【詳解】證明:(1)連結(jié)交于,連結(jié),由于棱柱的側(cè)面是平行四邊形,故為的中點(diǎn),又為的中點(diǎn),故是的中位線,所以,又平面,平面,所以平面.(2)取的中點(diǎn)為,連結(jié),,,在中,,由,知為正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于基礎(chǔ)題.18、(1)(2)見解析【解析】
(1)弄清題意,將相關(guān)數(shù)據(jù)代入齊奧爾科夫斯基公式:,即可得出各個(gè)等級(jí)的速度對(duì)應(yīng)的的值;(2)弄清題意與相關(guān)名詞,火箭起飛質(zhì)量即為,將公式變形,分離出,解不等式即可得,的最小值為.【詳解】(1)由題意可得,,,且,,當(dāng)達(dá)到第一宇宙速度時(shí),有,;當(dāng)達(dá)到第二宇宙速度時(shí),有,;當(dāng)達(dá)到第三宇宙速度時(shí),有,.(2)因?yàn)橄M_(dá)到,但火箭起飛質(zhì)量最大值為,,,即,得,的最小值為比較(1)中當(dāng)達(dá)到第三宇宙速度時(shí),;火箭起飛質(zhì)量為,此時(shí),達(dá)到,但火箭起飛質(zhì)量最大值為,的最小值為.由以上說(shuō)明實(shí)際意義為:不是火箭的推進(jìn)劑質(zhì)量越大,火箭達(dá)到的速度越大,當(dāng)減少推進(jìn)劑質(zhì)量,增大火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,同樣可以達(dá)到想要的速度.【點(diǎn)睛】本題是一個(gè)典型的數(shù)學(xué)模型的應(yīng)用問題,用數(shù)學(xué)的知識(shí)解決實(shí)際問題,這類題目關(guān)鍵是弄清題意;建立適當(dāng)?shù)暮瘮?shù)模型進(jìn)行解答.屬于中檔題.19、(1)(2)【解析】
(1)利用正弦定理邊角互化的思想以及兩角和的正弦公式、三角形的內(nèi)角和定理以及誘導(dǎo)公式求出的值,結(jié)合角的范圍求出角的值;(2)由三角形的面積公式得,由正弦定理結(jié)合內(nèi)角和定理得出,利用為銳角三角形得出的取值范圍,可求出的范圍,進(jìn)而求出面積的取值范圍.【詳解】(1),由正弦定理邊角互化思想得,所以,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州城市職業(yè)學(xué)院《機(jī)械設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)科學(xué)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 油橄欖示范基地建設(shè)項(xiàng)目可行性研究報(bào)告-油橄欖市場(chǎng)需求持續(xù)擴(kuò)大
- 貴陽(yáng)人文科技學(xué)院《樂理視唱一》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《智慧城市信息系統(tǒng)建設(shè)與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025山西省建筑安全員-A證考試題庫(kù)及答案
- 2025河南省建筑安全員B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 2025河南省安全員B證考試題庫(kù)附答案
- 2025福建建筑安全員B證考試題庫(kù)附答案
- 2025上海市安全員A證考試題庫(kù)
- 常見生產(chǎn)安全事故防治PPT課件
- 粉末涂料使用說(shuō)明
- 玻璃瓶罐的缺陷產(chǎn)生原因及解決方法63699
- 贊比亞礦產(chǎn)資源及礦業(yè)開發(fā)前景分析
- 高層住宅(23-33層)造價(jià)估算指標(biāo)
- 大型儲(chǔ)罐吊裝方案
- “千師訪萬(wàn)家”家訪記錄表(共2頁(yè))
- 海拔高度與氣壓、空氣密度、重力加速度對(duì)照表
- 《青田石雕》教學(xué)設(shè)計(jì)
- (精選)有限空間作業(yè)安全監(jiān)理實(shí)施細(xì)則
- GB 19295-2021 食品安全國(guó)家標(biāo)準(zhǔn) 速凍面米與調(diào)制食品(高清版)
評(píng)論
0/150
提交評(píng)論