福建省三明市2025屆數(shù)學(xué)高一下期末聯(lián)考試題含解析_第1頁
福建省三明市2025屆數(shù)學(xué)高一下期末聯(lián)考試題含解析_第2頁
福建省三明市2025屆數(shù)學(xué)高一下期末聯(lián)考試題含解析_第3頁
福建省三明市2025屆數(shù)學(xué)高一下期末聯(lián)考試題含解析_第4頁
福建省三明市2025屆數(shù)學(xué)高一下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省三明市2025屆數(shù)學(xué)高一下期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為定義在上的函數(shù),其圖象關(guān)于軸對稱,當(dāng)時,有,且當(dāng)時,,若方程()恰有5個不同的實數(shù)解,則的取值范圍是()A. B. C. D.2.已知,下列不等式中必成立的一個是()A. B. C. D.3.已知向量,若,則()A.1 B. C.2 D.34.若圓錐的高擴大為原來的3倍,底面半徑縮短為原來的12A.縮小為原來的34 B.縮小為原來的C.?dāng)U大為原來的2倍 D.不變5.如果,且,那么下列不等式成立的是()A. B. C. D.6.在中,角對應(yīng)的邊分別是,已知,的面積為,則外接圓的直徑為()A. B. C. D.7.如圖,在三角形中,點是邊上靠近的三等分點,則()A. B.C. D.8.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.59.設(shè)集合,集合,則()A. B. C. D.10.如圖所示,在正方形ABCD中,E為AB的中點,F(xiàn)為CE的中點,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已有無窮等比數(shù)列的各項的和為1,則的取值范圍為__________.12.設(shè),向量,,若,則__________.13.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.14.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項的和為__.15.設(shè)無窮等比數(shù)列的公比為,若,則__________________.16.若一個圓柱的側(cè)面展開圖是邊長為2的正方形,則此圓柱的體積為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟價值是種植乙水果經(jīng)濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,點在直徑上,且.(1)若,求的長;(2)設(shè),求該空地產(chǎn)生最大經(jīng)濟價值時種植甲種水果的面積.18.已知數(shù)列的前項和(1)求的通項公式;(2)若數(shù)列滿足:,求的前項和(結(jié)果需化簡)19.已知角的頂點與原點重合,其始邊與軸正半軸重合,終邊與單位圓交于點,若,且.(1)求的值;(2)求的值.20.已知向量.(1)求的值;(2)若,且,求.21.已知,,且(1)求函數(shù)的解析式;(2)當(dāng)時,的最小值是,求此時函數(shù)的最大值,并求出函數(shù)取得最大值時自變量的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】當(dāng)時,有,所以,所以函數(shù)在上是周期為的函數(shù),從而當(dāng)時,,有,又,即,有易知為定義在上的偶函數(shù),所以可作出函數(shù)的圖象與直線有個不同的交點,所以,解得,故選C.點睛:本題主要考查了函數(shù)的奇偶性、周期性、對稱性,函數(shù)與方程等知識的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想研究直線與函數(shù)圖象的交點問題,解答時現(xiàn)討論得到分段函數(shù)的解析式,然后做出函數(shù)的圖象,將方程恰有5個不同的實數(shù)解轉(zhuǎn)化為直線與函數(shù)的圖象由5個不同的交點,由數(shù)形結(jié)合法列出不等式組是解答的關(guān)鍵.2、B【解析】

根據(jù)不等式的性質(zhì),對選項逐一分析,由此確定正確選項.【詳解】對于A選項,由于,不等號方向不相同,不能相加,故A選項錯誤.對于B選項,由于,所以,而,根據(jù)不等式的性質(zhì)有:,故B選項正確.對于C選項,,而兩個數(shù)的正負無法確定,故無法判斷的大小關(guān)系,故C選項錯誤.對于D選項,,而兩個數(shù)的正負無法確定,故無法判斷的大小關(guān)系,故D選項錯誤.故選:B.【點睛】本小題主要考查根據(jù)不等式的性質(zhì)判斷不等式是否成立,屬于基礎(chǔ)題.3、B【解析】

可求出,根據(jù)即可得出,進行數(shù)量積的坐標運算即可求出x.【詳解】;∵;∴;解得.故選B.【點睛】本題考查向量垂直的充要條件,向量坐標的減法和數(shù)量積運算,屬于基礎(chǔ)題.4、A【解析】

設(shè)原來的圓錐底面半徑為r,高為h,可得出變化后的圓錐的底面半徑為12r,高為【詳解】設(shè)原來的圓錐底面半徑為r,高為h,該圓錐的體積為V=1變化后的圓錐底面半徑為12r,高為該圓錐的體積為V'=1故選:A.【點睛】本題考查圓錐體積的計算,考查變化后的圓錐體積的變化,解題關(guān)鍵就是圓錐體積公式的應(yīng)用,考查計算能力,屬于中等題.5、D【解析】

由,且,可得.再利用不等式的基本性質(zhì)即可得出,.【詳解】,且,.,,因此.故選:.【點睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.6、D【解析】

根據(jù)三角形面積公式求得;利用余弦定理求得;根據(jù)正弦定理求得結(jié)果.【詳解】由題意得:,解得:由余弦定理得:由正弦定理得外接圓的直徑為:本題正確選項:【點睛】本題考查正弦定理、余弦定理、三角形面積公式的綜合應(yīng)用問題,考查學(xué)生對于基礎(chǔ)公式和定理的掌握情況.7、A【解析】

利用向量的三角形法則以及線性運算法則進行運算,即可得出結(jié)論.【詳解】因為點是邊上靠近的三等分點,所以,所以,故選:A.【點睛】本題考查向量的加?減法以及數(shù)乘運算,需要學(xué)生熟練掌握三角形法則和共線定理.8、B【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】結(jié)束,輸出故答案選B【點睛】本題考查了程序框圖的計算,屬于??碱}型.9、B【解析】

已知集合A,B,取交集即可得到答案.【詳解】集合,集合,則故選B【點睛】本題考查集合的交集運算,屬于簡單題.10、D【解析】

由平面向量基本定理和向量運算求解即可【詳解】根據(jù)題意得:,又,,所以.故選D.【點睛】本題主要考查了平面向量的基本定理的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)無窮等比數(shù)列的各項和表達式,將用公比表示,根據(jù)的范圍求解的范圍.【詳解】因為且,又,且,則.【點睛】本題考查無窮等比數(shù)列各項和的應(yīng)用,難度一般.關(guān)鍵是將待求量與公比之間的關(guān)系找到,然后根據(jù)的取值范圍解決問題.12、【解析】從題設(shè)可得,即,應(yīng)填答案.13、【解析】

已知求,通常分進行求解即可?!驹斀狻繒r,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【點睛】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。14、【解析】試題分析:∵數(shù)列滿足,且,∴當(dāng)時,.當(dāng)時,上式也成立,∴.∴.∴數(shù)列的前項的和.∴數(shù)列的前項的和為.故答案為.考點:(1)數(shù)列遞推式;(2)數(shù)列求和.15、【解析】

由可知,算出用表示的極限,再利用性質(zhì)計算得出即可.【詳解】顯然公比不為1,所以公比為的等比數(shù)列求和公式,且,故.此時當(dāng)時,求和極限為,所以,故,所以,故,又,故.故答案為:.【點睛】本題主要考查等比數(shù)列求和公式,當(dāng)時.16、2【解析】試題分析:設(shè)圓柱的底面半徑為r,高為h,底面積為S,體積為V,則有2πr=2?r=1π,故底面面積S=πr考點:圓柱的體積三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1或3(2)【解析】

試題分析:(1)在中,因為,,,所以由余弦定理,且,,所以,解得或(2)該空地產(chǎn)生最大經(jīng)濟價值等價于種植甲種水果的面積最大,所以用表示出,再利用三角函數(shù)求最值得試題解析:(1)連結(jié),已知點在以為直徑的半圓周上,所以為直角三角形,因為,,所以,,在中由余弦定理,且,所以,解得或,(2)因為,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若產(chǎn)生最大經(jīng)濟效益,則的面積最大,,因為,所以所以當(dāng)時,取最大值為,此時該地塊產(chǎn)生的經(jīng)濟價值最大考點:①解三角形及正弦定理的應(yīng)用②三角函數(shù)求最值18、(1);(2);【解析】

(1)運用數(shù)列的遞推式得時,,時,,化簡計算可得所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式,計算可得所求和.【詳解】(1)可得時,則(2)數(shù)列滿足,可得,即,前項和兩式相減可得化簡可得【點睛】本題考查數(shù)列的遞推式的運用,考查數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,考查運算能力,屬于中檔題.19、(1);(2)【解析】

(1)平方處理求出,根據(jù)角的范圍可得,即可得解;(2)變形處理,結(jié)合(1)已計算的結(jié)果即可求解.【詳解】(1)由題:角的頂點與原點重合,其始邊與軸正半軸重合,終邊與單位圓交于點,若,,即,兩邊平方可得:,,所以;(2)【點睛】此題考查同角三角函數(shù)的關(guān)系,根據(jù)平方關(guān)系處理同角正余弦的和差積三者關(guān)系,利用平方關(guān)系合理變形求值.20、(1);(2).【解析】

(1)對等式進行平方運算,根據(jù)平面向量的模和數(shù)量積的坐標表示公式,結(jié)合兩角差的余弦公式直接求解即可;(2)由(1)可以結(jié)合同角的三角函數(shù)關(guān)系式求出的值,再由同角三角函數(shù)關(guān)系式結(jié)合的值求出的值,最后利用兩角和的正弦公式求出的值即可.【詳解】(1);(2)因為,所以,而,所以,因為,,所以.因此有.【點睛】本題考查了已知平面向量的模求參數(shù)問題,考查了平面向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論