重慶市秀山縣重點(diǎn)中學(xué)2023-2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
重慶市秀山縣重點(diǎn)中學(xué)2023-2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
重慶市秀山縣重點(diǎn)中學(xué)2023-2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
重慶市秀山縣重點(diǎn)中學(xué)2023-2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
重慶市秀山縣重點(diǎn)中學(xué)2023-2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市秀山縣重點(diǎn)中學(xué)2023-2024學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.2.下列“慢行通過,注意危險(xiǎn),禁止行人通行,禁止非機(jī)動(dòng)車通行”四個(gè)交通標(biāo)志圖(黑白陰影圖片)中為軸對(duì)稱圖形的是()A. B. C. D.3.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF4.如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于()A.90° B.120° C.60° D.30°5.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.6.已知關(guān)于x的一元二次方程mx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>17.已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,若關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內(nèi)有兩個(gè)相等的實(shí)數(shù)根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=48.下列圖形是由同樣大小的棋子按照一定規(guī)律排列而成的,其中,圖①中有5個(gè)棋子,圖②中有10個(gè)棋子,圖③中有16個(gè)棋子,…,則圖⑥________中有個(gè)棋子()A.31 B.35 C.40 D.509.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.10.小華和小紅到同一家鮮花店購買百合花與玫瑰花,他們購買的數(shù)量如下表所示,小華一共花的錢比小紅少8元,下列說法正確的是()百合花玫瑰花小華6支5支小紅8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元11.如圖是由三個(gè)相同小正方體組成的幾何體的主視圖,那么這個(gè)幾何體可以是()A.B.C.D.12.已知點(diǎn)、都在反比例函數(shù)的圖象上,則下列關(guān)系式一定正確的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C.動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為14.袋中裝有一個(gè)紅球和二個(gè)黃球,它們除了顏色外都相同,隨機(jī)從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,兩次都摸到紅球的概率是_____.15.如圖,在梯形中,,,點(diǎn)、分別是邊、的中點(diǎn).設(shè),,那么向量用向量表示是________.16.如圖,在矩形ABCD中,AB=4,BC=5,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點(diǎn)G,則CG為_____.17.若關(guān)于x的方程x2﹣8x+m=0有兩個(gè)相等的實(shí)數(shù)根,則m=_____.18.如果拋物線y=ax2+5的頂點(diǎn)是它的最低點(diǎn),那么a的取值范圍是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.20.(6分)為實(shí)施“農(nóng)村留守兒童關(guān)愛計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;某愛心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個(gè)班級(jí)的概率.21.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說明理由;(3)當(dāng)△CPE是等腰三角形時(shí),請(qǐng)直接寫出m的值.22.(8分).在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為;(2)小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請(qǐng)用樹狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.23.(8分)如圖,在平面直角坐標(biāo)系中,以直線為對(duì)稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線與軸交于點(diǎn).(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對(duì)稱軸的交點(diǎn)為,是拋物線上位于對(duì)稱軸右側(cè)的一點(diǎn),若,且與的面積相等,求點(diǎn)的坐標(biāo);(3)若在軸上有且只有一點(diǎn),使,求的值.24.(10分)某蔬菜生產(chǎn)基地的氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗(yàn)階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y(℃)與時(shí)間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.請(qǐng)根據(jù)圖中信息解答下列問題:求這天的溫度y與時(shí)間x(0≤x≤24)的函數(shù)關(guān)系式;求恒溫系統(tǒng)設(shè)定的恒定溫度;若大棚內(nèi)的溫度低于10℃時(shí),蔬菜會(huì)受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時(shí),才能使蔬菜避免受到傷害?25.(10分)如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.26.(12分)某學(xué)校準(zhǔn)備采購一批茶藝耗材和陶藝耗材.經(jīng)查詢,如果按照標(biāo)價(jià)購買兩種耗材,當(dāng)購買茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍時(shí),購買茶藝耗材共需要18000元,購買陶藝耗材共需要12000元,且一套陶藝耗材單價(jià)比一套茶藝耗材單價(jià)貴150元.求一套茶藝耗材、一套陶藝耗材的標(biāo)價(jià)分別是多少元?學(xué)校計(jì)劃購買相同數(shù)量的茶藝耗材和陶藝耗材.商家告知,因?yàn)橹苣陸c,茶藝耗材的單價(jià)在標(biāo)價(jià)的基礎(chǔ)上降價(jià)2元,陶藝耗材的單價(jià)在標(biāo)價(jià)的基礎(chǔ)降價(jià)150元,該校決定增加采購數(shù)量,實(shí)際購買茶藝耗材和陶藝耗材的數(shù)量在原計(jì)劃基礎(chǔ)上分別增加了2.5%和,結(jié)果在結(jié)算時(shí)發(fā)現(xiàn),兩種耗材的總價(jià)相等,求的值.27.(12分)數(shù)學(xué)興趣小組為了解我校初三年級(jí)1800名學(xué)生的身體健康情況,從初三隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.補(bǔ)全條形統(tǒng)計(jì)圖,并估計(jì)我校初三年級(jí)體重介于47kg至53kg的學(xué)生大約有多少名.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

連接CD,再利用勾股定理分別計(jì)算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點(diǎn)睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.2、B【解析】

根據(jù)軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得出答案.【詳解】A.不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)正確;C.不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選B.3、B【解析】

根據(jù)三角形一邊的中點(diǎn)與此邊所對(duì)頂點(diǎn)的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點(diǎn)睛】本題考查了三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點(diǎn)與此邊所對(duì)頂點(diǎn)的連線叫做三角形的中線.4、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點(diǎn)睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長.解題時(shí)注意:垂直弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.5、B【解析】試題解析:從正面看是三個(gè)矩形,中間矩形的左右兩邊是虛線,故選B.6、A【解析】

∵一元二次方程mx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點(diǎn)睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當(dāng)△=b2﹣4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)△=b2﹣4ac=0時(shí),方程有有兩個(gè)相等的實(shí)數(shù)根;(3)當(dāng)△=b2﹣4ac<0時(shí),方程沒有實(shí)數(shù)根.7、D【解析】解:由對(duì)稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時(shí),y=c+5,x=3時(shí),y=c﹣3,關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實(shí)數(shù)根,當(dāng)△=0時(shí),即c=4,此時(shí)x=2,滿足題意.當(dāng)△>0時(shí),(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當(dāng)c=﹣5時(shí),此時(shí)方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當(dāng)c=3時(shí),此時(shí)方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時(shí)滿足題意,故﹣5<c≤3或c=4,故選D.點(diǎn)睛:本題主要考查二次函數(shù)與一元二次方程的關(guān)系.理解二次函數(shù)與一元二次方程之間的關(guān)系是解題的關(guān)鍵.8、C【解析】

根據(jù)題意得出第n個(gè)圖形中棋子數(shù)為1+2+3+…+n+1+2n,據(jù)此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個(gè),圖2中棋子有10=1+2+3+2×2個(gè),圖3中棋子有16=1+2+3+4+3×2個(gè),…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個(gè),故選C.【點(diǎn)睛】本題考查了圖形的變化規(guī)律,通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.9、D【解析】

根據(jù)k>0,k<0,結(jié)合兩個(gè)函數(shù)的圖象及其性質(zhì)分類討論.【詳解】分兩種情況討論:①當(dāng)k<0時(shí),反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點(diǎn)在原點(diǎn)下方,D符合;②當(dāng)k>0時(shí),反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點(diǎn)在原點(diǎn)上方,都不符.分析可得:它們?cè)谕恢苯亲鴺?biāo)系中的圖象大致是D.故選D.【點(diǎn)睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點(diǎn).10、A【解析】

設(shè)每支百合花x元,每支玫瑰花y元,根據(jù)總價(jià)=單價(jià)×購買數(shù)量結(jié)合小華一共花的錢比小紅少8元,即可得出關(guān)于x、y的二元一次方程,整理后即可得出結(jié)論.【詳解】設(shè)每支百合花x元,每支玫瑰花y元,根據(jù)題意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故選:A.【點(diǎn)睛】考查了二元一次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程是解題的關(guān)鍵.11、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項(xiàng)A符合要求,故選A.考點(diǎn):簡(jiǎn)單幾何體的三視圖.12、A【解析】分析:根據(jù)反比例函數(shù)的性質(zhì),可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內(nèi),y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點(diǎn)睛:本題考查了反比例函數(shù),利用反比例函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、A【解析】試題分析:①當(dāng)點(diǎn)P在OA上運(yùn)動(dòng)時(shí),OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對(duì)稱軸的二次函數(shù),開口向上;②當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,y),則S=xy=k,為定值,故B、D選項(xiàng)錯(cuò)誤;③當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),S隨t的增大而逐漸減小,故C選項(xiàng)錯(cuò)誤.故選A.考點(diǎn):1.反比例函數(shù)綜合題;2.動(dòng)點(diǎn)問題的函數(shù)圖象.14、【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實(shí)驗(yàn).【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到紅球的有1種結(jié)果,所以兩次都摸到紅球的概率是,故答案為.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率的知識(shí).注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).15、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點(diǎn)E、F分別是邊AB、CD的中點(diǎn),∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點(diǎn)睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵,本題還考查了梯形的中位線等于上底與下底和的一半.16、【解析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進(jìn)而證明△AEG為直角三角形,運(yùn)用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點(diǎn)睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應(yīng)用、射影定理等幾何知識(shí)點(diǎn)為核心構(gòu)造而成;對(duì)綜合的分析問題解決問題的能力提出了一定的要求.17、1【解析】

根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關(guān)于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.18、a>1【解析】根據(jù)二次函數(shù)的圖像,由拋物線y=ax2+5的頂點(diǎn)是它的最低點(diǎn),知a>1,故答案為a>1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點(diǎn):用列舉法求概率.20、解:(1)該校班級(jí)個(gè)數(shù)為4÷20%=20(個(gè)),只有2名留守兒童的班級(jí)個(gè)數(shù)為:20﹣(2+3+4+5+4)=2(個(gè)),該校平均每班留守兒童的人數(shù)為:=4(名),補(bǔ)圖如下:(2)由(1)得只有2名留守兒童的班級(jí)有2個(gè),共4名學(xué)生.設(shè)A1,A2來自一個(gè)班,B1,B2來自一個(gè)班,有樹狀圖可知,共有12中等可能的情況,其中來自一個(gè)班的共有4種情況,則所選兩名留守兒童來自同一個(gè)班級(jí)的概率為:=.【解析】(1)首先求出班級(jí)數(shù),然后根據(jù)條形統(tǒng)計(jì)圖求出只有2名留守兒童的班級(jí)數(shù),再求出總的留守兒童數(shù),最后求出每班平均留守兒童數(shù);(2)利用樹狀圖確定可能種數(shù)和來自同一班的種數(shù),然后就能算出來自同一個(gè)班級(jí)的概率.21、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)討論:當(dāng)PC=PE時(shí),m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時(shí),m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時(shí),m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時(shí),m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點(diǎn)睛】本題考核知識(shí)點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.22、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結(jié)果總數(shù),摸出標(biāo)有數(shù)字2的小球有1種可能,因此摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結(jié)果數(shù),再找出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù),可求得結(jié)果.試題解析:(1)P(摸出的球?yàn)闃?biāo)有數(shù)字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結(jié)果數(shù),其中點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù)為6,∴P(點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi))==.考點(diǎn):1列表或樹狀圖求概率;2平面直角坐標(biāo)系.23、(1).;(2)點(diǎn)坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點(diǎn)坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個(gè)交點(diǎn),且P為切點(diǎn),P為MN的中點(diǎn),運(yùn)用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時(shí),直線與關(guān)于對(duì)稱.,,.,,.綜上所述,點(diǎn)坐標(biāo)為;.(3)由題意可得:.,,,即.,,.設(shè)的中點(diǎn)為,點(diǎn)有且只有一個(gè),以為直徑的圓與軸只有一個(gè)交點(diǎn),且為切點(diǎn).軸,為的中點(diǎn),.,,,,即,.,.點(diǎn)睛:此題主要考查二次函數(shù)的綜合問題,會(huì)靈活根據(jù)題意求拋物線解析式,會(huì)分析題中的基本關(guān)系列方程解決問題,會(huì)分類討論各種情況是解題的關(guān)鍵.24、(1)y關(guān)于x的函數(shù)解析式為;(2)恒溫系統(tǒng)設(shè)定恒溫為20°C;(3)恒溫系統(tǒng)最多關(guān)閉10小時(shí),蔬菜才能避免受到傷害.【解析】分析:(1)應(yīng)用待定系數(shù)法分段求函數(shù)解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設(shè)線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(diǎn)(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當(dāng)x=5時(shí),y=20∴B坐標(biāo)為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設(shè)雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關(guān)于x的函數(shù)解析式為:(2)由(1)恒溫系統(tǒng)設(shè)定恒溫為20°C(3)把y=10代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論