云南省鳳慶二中新高考適應性月考卷(六)數(shù)學試題_第1頁
云南省鳳慶二中新高考適應性月考卷(六)數(shù)學試題_第2頁
云南省鳳慶二中新高考適應性月考卷(六)數(shù)學試題_第3頁
云南省鳳慶二中新高考適應性月考卷(六)數(shù)學試題_第4頁
云南省鳳慶二中新高考適應性月考卷(六)數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省鳳慶二中新高考適應性月考卷(六)數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中既關于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.2.對于任意,函數(shù)滿足,且當時,函數(shù).若,則大小關系是()A. B. C. D.3.函數(shù)在上的大致圖象是()A. B.C. D.4.已知集合A={x|x<1},B={x|},則A. B.C. D.5.設,滿足約束條件,則的最大值是()A. B. C. D.6.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.07.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.8.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.9.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個10.如圖,已知平面,,、是直線上的兩點,、是平面內的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.11.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或12.已知是邊長為的正三角形,若,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.14.函數(shù)的圖象向右平移個單位后,與函數(shù)的圖象重合,則_____.15.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.16.設是公差不為0的等差數(shù)列的前項和,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大?。唬?)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.18.(12分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學期望.19.(12分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數(shù),直線的斜率之積為定值.20.(12分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.21.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.22.(10分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)函數(shù)的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質,根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調性,屬于基礎題.2、A【解析】

由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數(shù)滿足,因為函數(shù)關于點對稱,當時,是單調增函數(shù),所以在定義域上是單調增函數(shù).因為,所以,.故選:A.【點睛】本題考查利用函數(shù)性質比較函數(shù)值的大小,解題的關鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..3、D【解析】

討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調遞增,令,則,根據(jù)三角函數(shù)的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調性的關系以及導數(shù)的幾何意義,屬于中檔題.4、A【解析】∵集合∴∵集合∴,故選A5、D【解析】

作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法,屬于基礎題.6、C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關系數(shù)的性質,可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題.7、C【解析】

根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.8、A【解析】

設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,,,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數(shù)形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數(shù)形結合思想的應用,屬于中等題.9、C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.10、B【解析】

為所求的二面角的平面角,由得出,求出在內的軌跡,根據(jù)軌跡的特點求出的最大值對應的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內,以為軸,以的中垂線為軸建立平面直角坐標系則,設,整理可得:在內的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結果.11、C【解析】

由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.12、A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:根據(jù)題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關鍵步驟在于對題中條件的轉化,根據(jù)三點共線,結合向量的性質可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結果,最后再加,得出最后的答案.14、【解析】

根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導公式求得滿足的方程,結合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個單位后,得到的函數(shù)解析式為,因為函數(shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因為,所以.故答案為:【點睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.15、2.【解析】

由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結果:【點睛】本題考查了雙曲線和的標準方程及其性質,涉及到點到直線距離公式的考查,屬于基礎題.16、18【解析】

先由,可得,再結合等差數(shù)列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數(shù)列基本量的運算,重點考查了等差數(shù)列的前項和公式,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)66.5(2)屬于【解析】

(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應用,意在考查學生對這些知識的理解掌握水平.18、(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數(shù)學期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機變量X的分布列為:X01020301P數(shù)學期望.【點睛】本題主要考查離散型隨機變量的分布列和數(shù)學期望,屬于中檔題.19、(1);(2)證明見解析【解析】

(1)運用離心率公式和點滿足橢圓方程,解得,,進而得到橢圓方程;(2)設直線,代入橢圓方程,運用韋達定理和直線的斜率公式,以及點在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因為,所以,①又橢圓過點,所以②由①②,解得所以橢圓的標準方程為.(2)證明設直線:,聯(lián)立得,設,則易知故所以對于任意的,直線的斜率之積為定值.【點睛】本題考查橢圓的方程的求法,注意運用離心率公式和點滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運用韋達定理和直線的斜率公式,化簡整理,考查運算能力,屬于中檔題.20、(1)直線的普通方程,圓的直角坐標方程:.(2)【解析】

(1)直接利用轉換關系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.(2)將直線的參數(shù)方程代入圓的直角坐標方程,利用一元二次方程根和系數(shù)關系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉換為直角坐標方程為x+y﹣3=0.圓C的極坐標方程為ρ2﹣4ρcosθ=3,轉換為直角坐標方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點睛】本題考查參數(shù)方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數(shù)關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.21、(1).(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論