![內(nèi)蒙古鄂爾多斯市康巴什區(qū)鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGZzGpWAVpzcAAIsftEhoyk400.jpg)
![內(nèi)蒙古鄂爾多斯市康巴什區(qū)鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGZzGpWAVpzcAAIsftEhoyk4002.jpg)
![內(nèi)蒙古鄂爾多斯市康巴什區(qū)鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGZzGpWAVpzcAAIsftEhoyk4003.jpg)
![內(nèi)蒙古鄂爾多斯市康巴什區(qū)鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGZzGpWAVpzcAAIsftEhoyk4004.jpg)
![內(nèi)蒙古鄂爾多斯市康巴什區(qū)鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGZzGpWAVpzcAAIsftEhoyk4005.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古鄂爾多斯市康巴什區(qū)鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.把正方形ABCD沿對角線AC折起,當(dāng)以A,B,C,D四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),二面角的大小為()A.30° B.45° C.60° D.90°2.在△ABC中,,則△ABC為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形3.已知數(shù)據(jù),2的平均值為2,方差為1,則數(shù)據(jù)相對于原數(shù)據(jù)()A.一樣穩(wěn)定 B.變得比較穩(wěn)定C.變得比較不穩(wěn)定 D.穩(wěn)定性不可以判斷4.如果存在實(shí)數(shù),使成立,那么實(shí)數(shù)的取值范圍是()A. B.或C.或 D.或5.已知a,b,c,d∈R,則下列不等式中恒成立的是()A.若a>b,c>d,則ac>bd B.若a>b,則C.若a>b>0,則(a﹣b)c>0 D.若a>b,則a﹣c>b﹣c6.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.7.如果,且,那么下列不等式成立的是()A. B. C. D.8.在中,分別為角的對邊,若的面積為,則的值為()A. B. C. D.9.已知a,b,,且,,則()A. B. C. D.10.已知兩個(gè)正數(shù)a,b滿足,則的最小值是(
)A.2 B.3 C.4 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.將邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,則折起后B,D兩點(diǎn)的距離為________.12.已知當(dāng)時(shí),函數(shù)(且)取得最小值,則時(shí),的值為__________.13.用數(shù)學(xué)歸納法證明“”,在驗(yàn)證成立時(shí),等號左邊的式子是______.14.已知直線與軸、軸相交于兩點(diǎn),點(diǎn)在圓上移動,則面積的最大值和最小值之差為.15.在中,若,則等于__________.16.?dāng)?shù)列滿足,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系xOy中,已知圓,三個(gè)點(diǎn),B、C均在圓上,(1)求該圓的圓心的坐標(biāo);(2)若,求直線BC的方程;(3)設(shè)點(diǎn)滿足四邊形TABC是平行四邊形,求實(shí)數(shù)t的取值范圍.18.已知.(I)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的值;(II)若對任意,均有恒成立,求實(shí)數(shù)的取值范圍.19.已知向量.(1)若向量,且,求的坐標(biāo);(2)若向量與互相垂直,求實(shí)數(shù)的值.20.在中,角、、所對的邊分別為、、,且滿足.(1)求角的大?。唬?)若,,求的面積.21.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊過點(diǎn).(1)求的值;(2)已知為銳角,,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
當(dāng)平面ACD垂直于平面BCD時(shí)體積最大,得到答案.【詳解】取中點(diǎn),連接當(dāng)平面ACD垂直于平面BCD時(shí)等號成立.此時(shí)二面角為90°故答案選D【點(diǎn)睛】本題考查了三棱錐體積的最大值,確定高的值是解題的關(guān)鍵.2、C【解析】
直接利用正弦定理余弦定理化簡得到,即得解.【詳解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案為:C【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的掌握水平和分析推理水平.3、C【解析】
根據(jù)均值定義列式計(jì)算可得的和,從而得它們的均值,再由方差公式可得,從而得方差.然后判斷.【詳解】由題可得:平均值為2,由,,所以變得不穩(wěn)定.故選:C.【點(diǎn)睛】本題考查均值與方差的計(jì)算公式,考查方差的含義.屬于基礎(chǔ)題.4、A【解析】
根據(jù),可得,再根據(jù)基本不等式取等的條件可得答案.【詳解】因?yàn)?,所以,即,即,又(?dāng)且僅當(dāng)時(shí)等號成立)所以,所以.故選:A【點(diǎn)睛】本題考查了余弦函數(shù)的值域,考查了基本不等式取等的條件,屬于中檔題.5、D【解析】
根據(jù)不等式的性質(zhì)判斷.【詳解】當(dāng)時(shí),A不成立;當(dāng)時(shí),B不成立;當(dāng)時(shí),C不成立;由不等式的性質(zhì)知D成立.故選D.【點(diǎn)睛】本題考查不等式的性質(zhì),不等式的性質(zhì)中,不等式兩邊乘以同一個(gè)正數(shù),不等式號方向不變,兩邊乘以同一個(gè)負(fù)數(shù),不等式號方向改變,這個(gè)性質(zhì)容易出現(xiàn)錯(cuò)誤:一是不區(qū)分所乘數(shù)的正負(fù),二是不區(qū)分是否為1.6、B【解析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點(diǎn)睛】此題考查了正弦、余弦定理,熟練掌握定理,準(zhǔn)確計(jì)算是解本題的關(guān)鍵,是中檔題7、D【解析】
由,且,可得.再利用不等式的基本性質(zhì)即可得出,.【詳解】,且,.,,因此.故選:.【點(diǎn)睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.8、B【解析】試題分析:由已知條件及三角形面積計(jì)算公式得由余弦定理得考點(diǎn):考查三角形面積計(jì)算公式及余弦定理.9、A【解析】
利用不等式的基本性質(zhì)以及特殊值法,即可得到本題答案.【詳解】由不等式的基本性質(zhì)有,,故A正確,B不正確;當(dāng)時(shí),,但,故C、D不正確.故選:A【點(diǎn)睛】本題主要考查不等式的基本性質(zhì),屬基礎(chǔ)題.10、D【解析】
根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點(diǎn)睛】本題考查基本不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是掌握基本不等式應(yīng)用的條件.二、填空題:本大題共6小題,每小題5分,共30分。11、1.【解析】
取AC的中點(diǎn)E,連結(jié)DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再結(jié)合ABCD是正方形可求出.【詳解】取AC的中點(diǎn)E,連結(jié)DE,BE,顯然DE⊥AC,因?yàn)槠矫鍭CD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【點(diǎn)睛】本題考查了空間中兩點(diǎn)間的距離,把空間角轉(zhuǎn)化為平面角是解決本題的關(guān)鍵.12、3【解析】
先根據(jù)計(jì)算,化簡函數(shù),再根據(jù)當(dāng)時(shí),函數(shù)取得最小值,代入計(jì)算得到答案.【詳解】或當(dāng)時(shí),函數(shù)取得最小值:或(舍去)故答案為3【點(diǎn)睛】本題考查了三角函數(shù)的化簡,輔助角公式,函數(shù)的最值,綜合性較強(qiáng),意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.13、【解析】
根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因?yàn)樽筮叺氖阶邮菑拈_始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點(diǎn)睛】項(xiàng)數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯(cuò)點(diǎn),要使問題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項(xiàng)的變化規(guī)律;二是相鄰兩項(xiàng)之間的變化規(guī)律.14、15【解析】
解:設(shè)作出與已知直線平行且與圓相切的直線,
切點(diǎn)分別為,如圖所示
則動點(diǎn)C在圓上移動時(shí),若C與點(diǎn)重合時(shí),
△ABC面積達(dá)到最小值;而C與點(diǎn)重合時(shí),△ABC面積達(dá)到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點(diǎn)
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點(diǎn)、點(diǎn)到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點(diǎn)
∴點(diǎn)、點(diǎn)到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:1515、;【解析】
由條件利用三角形內(nèi)角和公式求得,再利用正弦定理即可求解.【詳解】在中,,,,即,,故答案為:【點(diǎn)睛】本題考查了正弦定理解三角形,需熟記定理的內(nèi)容,屬于基礎(chǔ)題.16、【解析】
根據(jù)題意可求得和的等式相加,求得,進(jìn)而推出,判斷出數(shù)列是以6為周期的數(shù)列,進(jìn)而根據(jù)求出答案?!驹斀狻繉⒁陨蟽墒较嗉拥脭?shù)列是以6為周期的數(shù)列,故【點(diǎn)睛】對于遞推式的使用,我們可以嘗試讓取或,又得一個(gè)遞推式,將兩個(gè)遞推式相加或者相減來找規(guī)律,本題是一道中等難度題目。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或(3),【解析】
(1)將點(diǎn)代入圓的方程可得的值,繼而求出半徑和圓心(2)可設(shè)直線方程為:,可得圓心到直線的距離,結(jié)合弦心距定理可得的值,求出直線方程(3)設(shè),,,,因?yàn)槠叫兴倪呅蔚膶蔷€互相平分,得,,于是點(diǎn)既在圓上,又在圓上,從而圓與圓上有公共點(diǎn),即可求解.【詳解】(1)將代入圓得,解得,.半徑.(2),,且,設(shè)直線,即,圓心到直線的距離,由勾股定理得,,,,或,所以直線的方程為或.(3)設(shè),,,,因?yàn)槠叫兴倪呅蔚膶蔷€互相平分,所以①,因?yàn)辄c(diǎn)在圓上,所以②將①代入②,得,于是點(diǎn)既在圓上,又在圓上,從而圓與圓有公共點(diǎn),所以,解得.因此,實(shí)數(shù)的取值范圍是,.【點(diǎn)睛】本題考查了直線與圓的關(guān)系,涉及了向量知識,弦心距公式,點(diǎn)到直線的距離公式等內(nèi)容,綜合性較強(qiáng),難度較大.18、(I)或;(II).【解析】
(I)令,將有三個(gè)零點(diǎn)問題,轉(zhuǎn)化為有三個(gè)不同的解的解決.畫出和的圖像,結(jié)合圖像以及二次函數(shù)的判別式分類討論,由此求得的值.(II)令,將恒成立不等式等價(jià)轉(zhuǎn)化為恒成立,通過對分類討論,求得的最大值,由此求得的取值范圍.【詳解】(I)由題意等價(jià)于有三個(gè)不同的解由,可得其函數(shù)圖象如圖所示:聯(lián)立方程:,由可得結(jié)合圖象可知.同理,由可得,因?yàn)椋Y(jié)合圖象可知,綜上可得:或.(Ⅱ)設(shè),原不就價(jià)于,兩邊同乘得:,設(shè),原題等價(jià)于的最大值.(1)當(dāng)時(shí),,易得,(2),,易得,所以的最大值為16,即,故.【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查不等式恒成立問題的求解策略,考查分類討論的數(shù)學(xué)思想,屬于難題.19、(1)或(2)【解析】
(1)因?yàn)?,所以可以設(shè)求出坐標(biāo),根據(jù)模長,可以得到參數(shù)的方程.(2)由于已知條件可以計(jì)算出與坐標(biāo)(含有參數(shù))而兩向量垂直,可以得到關(guān)于的方程,完成本題.【詳解】(1)法一:設(shè),則,所以解得所以或法二:設(shè),因?yàn)?,,所以,因?yàn)椋越獾没?,所以或?)因?yàn)橄蛄颗c互相垂直所以,即而,,所以,因此,解得【點(diǎn)睛】考查了向量的線性表示,引入?yún)?shù),只要我們能建立起引入?yún)?shù)的方程,則就能計(jì)算出所求參數(shù)值,從而完成本題.20、(1)(2)【解析】
分析:(1)由,利用正弦定理可得,結(jié)合兩角和的正弦公式以及誘導(dǎo)公式可得;從而可得結(jié)果;(2)由余弦定理可得可得,所以.詳解:(1)∵∴∴(2)∵∴∴點(diǎn)睛:解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高鐵建設(shè)項(xiàng)目合作開發(fā)協(xié)議
- 農(nóng)業(yè)資源管理實(shí)務(wù)手冊
- 放射科醫(yī)生雇傭合同
- 養(yǎng)殖場轉(zhuǎn)讓協(xié)議合同
- 汽車融資租賃合同
- 2025年克孜勒蘇州道路客貨運(yùn)輸從業(yè)資格證b2考試題庫
- 小學(xué)二年級下冊數(shù)學(xué)除法口算題專項(xiàng)訓(xùn)練
- 2025年吉林貨運(yùn)從業(yè)資格證考試題技巧及答案
- 2025年毫州貨運(yùn)上崗證考試考哪些科目
- 電力系統(tǒng)集成合同(2篇)
- 膿包瘡護(hù)理查房
- 《信號工程施工》課件 項(xiàng)目一 信號圖紙識讀
- 設(shè)備日常維護(hù)及保養(yǎng)培訓(xùn)
- 設(shè)計(jì)院個(gè)人年終總結(jié)
- 中石油高空作業(yè)施工方案
- 避孕藥具知識培訓(xùn)
- 醫(yī)保違規(guī)檢討書
- 鋼結(jié)構(gòu)實(shí)習(xí)報(bào)告
- 2024年建房四鄰協(xié)議范本
- FTTR-H 全光組網(wǎng)解決方案裝維理論考試復(fù)習(xí)試題
- 2024年廣東佛山市中醫(yī)院三水醫(yī)院招聘61人歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
評論
0/150
提交評論