江蘇省南通市通州區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
江蘇省南通市通州區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
江蘇省南通市通州區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
江蘇省南通市通州區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
江蘇省南通市通州區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市通州區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平面直角坐標系中,已知點,點,直線:.如果對任意的點到直線的距離均為定值,則點關于直線的對稱點的坐標為()A. B. C. D.2.若,且,則的值是()A. B. C. D.3.從裝有紅球和綠球的口袋內任取2個球(其中紅球和綠球都多于2個),那么互斥而不對立的兩個事件是()A.至少有一個紅球,至少有一個綠球B.恰有一個紅球,恰有兩個綠球C.至少有一個紅球,都是紅球D.至少有一個紅球,都是綠球4.如圖所示是正方體的平面展開圖,在這個正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°5.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.86.如圖,在正方體中,已知,分別為棱,的中點,則異面直線與所成的角等于()A.90° B.60°C.45° D.30°7.一枚骰子連續(xù)投兩次,則兩次向上點數(shù)均為1的概率是()A. B. C. D.8.一個幾何體的三視圖如圖,則該幾何體的體積為()A. B. C.10 D.9.已知函數(shù)在區(qū)間上有最大值,則實數(shù)的取值范圍是()A. B. C. D.10.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.28二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,貨輪在海上以的速度沿著方位角(從指北方向順時針轉到目標方向線的水平角)為150°的方向航行.為了確定船位,在點B觀察燈塔A的方位角是120°,航行半小時后到達C點,觀察燈塔A的方位角是75°,則貨輪到達C點時與燈塔A的距離為______nmile12.數(shù)列是等比數(shù)列,,,則的值是________.13.如圖,長方體中,,,,與相交于點,則點的坐標為______________.14.已知,且是第一象限角,則的值為__________.15.等比數(shù)列中,,則公比____________.16.已知的圓心角所對的弧長等于,則該圓的半徑為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)當時,求的值;(2)設函數(shù),已知在中,內角、、的對邊分別為、、,若,,,求的取值范圍.18.在銳角中,角,,所對的邊分別為,,,且.(1)求;(2)若的面積為8,,求的值.19.已知為等差數(shù)列,且,.求的通項公式;若等比數(shù)列滿足,,求的前n項和公式.20.如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E為PD的中點,點F在PC上,且.(Ⅰ)求證:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)設點G在PB上,且.判斷直線AG是否在平面AEF內,說明理由.21.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設,且向量滿足,求的最小值;(3)在(2)的條件下,隨機選取一個向量,求的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用點到直線的距離公式表示出,由對任意的點到直線的距離均為定值,從而可得,求得直線的方程,再利用點關于直線對稱的性質即可得到對稱點的坐標?!驹斀狻坑牲c到直線的距離公式可得:點到直線的距離由于對任意的點到直線的距離均為定值,所以,即,所以直線的方程為:設點關于直線的對稱點的坐標為故,解得:,所以設點關于直線的對稱點的坐標為故答案選B【點睛】本題主要考查點關于直線對稱的對稱點的求法,涉及點到直線的距離,兩直線垂直斜率的關系,中點公式等知識點,考查學生基本的計算能力,屬于中檔題。2、A【解析】

對兩邊平方,可得,進而可得,再根據(jù),可知,由此即可求出結果.【詳解】因為,所以,所以,所以,又,所以所以.故選:A.【點睛】本題主要考查了同角的基本關系,屬于基礎題.3、B【解析】由于從口袋中任取2個球有三個事件,恰有一個紅球,恰有兩個綠球,一紅球和一綠球.所以恰有一個紅球,恰有兩個綠球是互斥而不對立的兩個事件.因而應選B.4、C【解析】

把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉化的數(shù)學思想,屬于中檔題.5、B【解析】

由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當且僅當nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內,二是多次用≥或≤時等號能否同時成立).6、B【解析】

連接,可證是異面直線與所成的角或其補角,求出此角即可.【詳解】連接,因為,分別為棱,的中點,所以,又正方體中,所以是異面直線與所成的角或其補角,是等邊三角形,=60°.所以異面直線與所成的角為60°.故選:B.【點睛】本題考查異面直線所成的角,解題時需根據(jù)定義作出異面直線所成的角,同時給出證明,然后在三角形中計算.7、D【解析】

連續(xù)投兩次骰子共有36種,求出滿足情況的個數(shù),即可求解.【詳解】一枚骰子投一次,向上的點數(shù)有6種,則連續(xù)投兩次骰子共有36種,兩次向上點數(shù)均為1的有1種情況,概率為.故選:D.【點睛】本題考查古典概型的概率,屬于基礎題.8、B【解析】

由三視圖可知該幾何體為正四棱臺,下底面邊長為4,上底面邊長為2,高為1.再由正四棱臺體積公式求解.【詳解】由三視圖可知該幾何體為正四棱臺,下底面邊長為4,上底面邊長為2,高為1,所以,,∴該正四棱臺的體積.故選:B.【點睛】本題考查由三視圖求正四棱臺的體積,關鍵是由三視圖判斷出原幾何體的形狀,屬于基礎題.9、B【解析】因為,所以由題設在只有一個零點且單調遞減,則問題轉化為,即,應選答案B.點睛:解答本題的關鍵是如何借助題設條件建立不等式組,這是解答本題的難點,也是解答好本題的突破口,如何通過解不等式使得問題巧妙獲解.10、C【解析】

根據(jù)等差數(shù)列的求和與通項性質求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質運用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過方位角定義,求出,,利用正弦定理即可得到答案.【詳解】根據(jù)題意,可知,,,因此可得,由正弦定理得:,求得,即答案為.【點睛】本題主要考查正弦定理的實際應用,難度不大.12、【解析】

由題得計算得解.【詳解】由題得,所以.因為等比數(shù)列同號,所以.故答案為:【點睛】本題主要考查等比數(shù)列的性質和等比中項的應用,意在考查學生對這些知識的理解掌握水平.13、【解析】

易知是的中點,求出的坐標,根據(jù)中點坐標公式求解.【詳解】可知,,由中點坐標公式得的坐標公式,即【點睛】本題考查空間直角坐標系和中點坐標公式,空間直角坐標的讀取是易錯點.14、;【解析】

利用兩角和的公式把題設展開后求得的值,進而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關系求得的值,最后利用誘導公式和對原式進行化簡,把的值和題設條件代入求解即可.【詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點睛】本題考查了兩角差的余弦公式、誘導公式以及同角三角函數(shù)的基本關系,需熟記三角函數(shù)中的公式,屬于中檔題.15、【解析】

根據(jù)題意得到:,解方程即可.【詳解】由題知:,解得:.故答案為:【點睛】本題主要考查等比數(shù)列的性質,熟練掌握等比數(shù)列的性質為解題的關鍵,屬于簡單題.16、【解析】

先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點睛】本題考查了角度和弧度的互化以及弧長公式的應用問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由共線向量的坐標運算化簡可得,將化切后代入即可(2)利用向量的坐標運算化簡,利用正弦定理求,根據(jù)角的范圍求值域即可.【詳解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范圍是.【點睛】本題主要考查了向量數(shù)量積的坐標運算,三角恒等式,型函數(shù)的值域,屬于中檔題.18、(1)(2)【解析】

(1)利用正弦定理,將csinA=acosC轉化為,可得,從而可得角C的大??;(2)利用面積公式直接求解b即可【詳解】(1)由正弦定理得,因為所以sinA>0,從而,即,又,所以;(2)由得b=8【點睛】本題考查三角函數(shù)中的恒等變換應用,考查正弦定理的應用,面積公式的應用,考查化歸思想屬于中檔題.19、(1);(2).【解析】

設等差數(shù)列的公差為d,由已知列關于首項與公差的方程組,求得首項與公差,則的通項公式可求;求出,進一步得到公比,再由等比數(shù)列的前n項和公式求解.【詳解】為等差數(shù)列,設公差為d,由已知可得,解得,.;由,,等比數(shù)列的公比,的前n項和公式.【點睛】本題考查等差數(shù)列的通項公式,考查等比數(shù)列的前n項和,是中檔題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結論;(Ⅱ)建立空間直角坐標系,結合兩個半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得點G的坐標,然后結合平面的法向量和直線AG的方向向量可判斷直線是否在平面內.【詳解】(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD,則PA⊥CD,由題意可知AD⊥CD,且PA∩AD=A,由線面垂直的判定定理可得CD⊥平面PAD.(Ⅱ)以點A為坐標原點,平面ABCD內與AD垂直的直線為x軸,AD,AP方向為y軸,z軸建立如圖所示的空間直角坐標系,易知:,由可得點F的坐標為,由可得,設平面AEF的法向量為:,則,據(jù)此可得平面AEF的一個法向量為:,很明顯平面AEP的一個法向量為,,二面角F-AE-P的平面角為銳角,故二面角F-AE-P的余弦值為.(Ⅲ)易知,由可得,則,注意到平面AEF的一個法向量為:,其且點A在平面AEF內,故直線AG在平面AEF內.21、(1);(2);(3).【解析】

(1)根據(jù)向量的垂直,轉化出方程組,求解方程組即可;(2)將向量賦予坐標,求得向量對應點的軌跡方程,將問題轉化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論