2025屆云南省陸良縣高一下數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第1頁(yè)
2025屆云南省陸良縣高一下數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第2頁(yè)
2025屆云南省陸良縣高一下數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第3頁(yè)
2025屆云南省陸良縣高一下數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第4頁(yè)
2025屆云南省陸良縣高一下數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆云南省陸良縣高一下數(shù)學(xué)期末監(jiān)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.三角函數(shù)是刻畫客觀世界周期性變化規(guī)律的數(shù)學(xué)模型,單位圓定義法是任意角的三角函數(shù)常用的定義方法,是以角度(數(shù)學(xué)上最常用弧度制)為自變量,任意角的終邊與單位圓交點(diǎn)坐標(biāo)為因變量的函數(shù).平面直角坐標(biāo)系中的單位圓指的是平面直角坐標(biāo)系上,以原點(diǎn)為圓心,半徑為單位長(zhǎng)度的圓.問題:已知角的終邊與單位圓的交點(diǎn)為,則()A. B. C. D.2.計(jì)算機(jī)中常用十六進(jìn)制是逢16進(jìn)1的計(jì)數(shù)制,采用數(shù)字0~9和字母A~F共16個(gè)計(jì)數(shù)符號(hào),這些符號(hào)與十進(jìn)制的數(shù)的對(duì)應(yīng)關(guān)系如下表:16進(jìn)制0123456789ABCDEF10進(jìn)制0123456789101112131415現(xiàn)在,將十進(jìn)制整數(shù)2019化成16進(jìn)制數(shù)為()A.7E3 B.7F3 C.8E3 D.8F33.若直線與直線互相平行,則的值為()A.4 B. C.5 D.4.在中,所對(duì)的邊分別為,若,,,則()A. B. C.1 D.35.為了了解所加工的一批零件的長(zhǎng)度,抽測(cè)了其中個(gè)零件的長(zhǎng)度,在這個(gè)工作中,個(gè)零件的長(zhǎng)度是()A.總體 B.個(gè)體 C.樣本容量 D.總體的一個(gè)樣本6.一張方桌的圖案如圖所示,將一顆豆子隨機(jī)地扔到桌面上,假設(shè)豆子不落在線上,下列事件的概率:(1)豆子落在紅色區(qū)域概率為;(2)豆子落在黃色區(qū)域概率為;(3)豆子落在綠色區(qū)域概率為;(4)豆子落在紅色或綠色區(qū)域概率為;(5)豆子落在黃色或綠色區(qū)域概率為.其中正確的結(jié)論有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7.關(guān)于x的不等式的解集是,則關(guān)于x的不等式的解集是()A. B.C. D.8.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號(hào)為()A.①②③ B.①② C.①③ D.②③9.已知,則的值等于()A. B. C. D.10.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載的“芻甍”(chumeng)是底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個(gè)芻甍.四邊形為矩形,與都是等邊三角形,,,則此“芻甍”的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則______.12.已知數(shù)列是等比數(shù)列,公比為,且,,則_________.13.=__________.14.在中,為上的一點(diǎn),且,是的中點(diǎn),過點(diǎn)的直線,是直線上的動(dòng)點(diǎn),,則_________.15.點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,則直線的方程為______.16.已知,且,則_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在梯形中,,,,.(1)在中,求的長(zhǎng);(2)若的面積等于,求的長(zhǎng).18.如圖,是正方形,是正方形的中心,底面是的中點(diǎn).(1)求證:平面;(2)若,求三棱錐的體積.19.設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為,,,乙協(xié)會(huì)編號(hào)為,丙協(xié)會(huì)編號(hào)分別為,,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.(1)用所給編號(hào)列出所有可能抽取的結(jié)果;(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率.20.已知函數(shù).(1)求函數(shù)的單調(diào)減區(qū)間.(2)求函數(shù)的最大值并求取得最大值時(shí)的的取值集合.(3)若,求的值.21.如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),BE⊥平面(I)證明:平面AEC⊥平面BED;(II)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

先求出和的值,再根據(jù)誘導(dǎo)公式即可得解.【詳解】因?yàn)榻堑慕K邊與單位圓的交點(diǎn)為,所以,,則.故選:A.【點(diǎn)睛】本題考查任意角三角函數(shù)值的求法,考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題,2、A【解析】

通過豎式除法,用2019除以16,取其余數(shù),再用商除以16,取其余數(shù),直至商為零,將余數(shù)逆著寫出來即可.【詳解】用2019除以16,得余數(shù)為3,商為126;用126除以16,得余數(shù)為14,商為7;用7除以16,得余數(shù)為7,商為0;將余數(shù)3,14,7逆著寫,即可得7E3.故選:A.【點(diǎn)睛】本題考查進(jìn)制的轉(zhuǎn)化,只需按照流程執(zhí)行即可.3、C【解析】

根據(jù)兩條存在斜率的直線平行,斜率相等且在縱軸上的截距不相等這一性質(zhì),可以求出的值.【詳解】直線的斜率為,在縱軸的截距為,因此若直線與直線互相平行,則一定有直線的斜率為,在縱軸的截距不等于,于是有且,解得,故本題選C.【點(diǎn)睛】本題考查了已知兩直線平行求參數(shù)問題.其時(shí)本題也可以運(yùn)用下列性質(zhì)解題:若直線與直線平行,則有且.4、A【解析】

利用三角形內(nèi)角和為,得到,利用正弦定理求得.【詳解】因?yàn)椋?,所以,在中,,所以,故選A.【點(diǎn)睛】本題考查三角形內(nèi)角和及正弦定理的應(yīng)用,考查基本運(yùn)算求解能力.5、D【解析】

根據(jù)總體與樣本中的相關(guān)概念進(jìn)行判斷.【詳解】由題意可知,在這個(gè)工作中,個(gè)零件的長(zhǎng)度是總體的一個(gè)樣本,故選D.【點(diǎn)睛】本題考查總體與樣本中相關(guān)概念的理解,屬于基礎(chǔ)題.6、B【解析】試題分析:方桌共有塊,其中紅色的由塊,黃色的由塊,,綠色的由塊,所以(1)(2)(3)結(jié)論正確,故選擇B.這里表面上看是與面積相關(guān)的幾何概型,其實(shí)還是古典概型考點(diǎn):古典概型的概率計(jì)算和事件間的關(guān)系.7、D【解析】

由不等式與方程的關(guān)系可得且,則等價(jià)于,再結(jié)合二次不等式的解法求解即可.【詳解】解:由關(guān)于x的不等式的解集是,由不等式與方程的關(guān)系可得且,則等價(jià)于等價(jià)于,解得,即關(guān)于x的不等式的解集是,故選:D.【點(diǎn)睛】本題考查了不等式與方程的關(guān)系,重點(diǎn)考查了二次不等式的解法,屬基礎(chǔ)題.8、D【解析】

由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯(cuò)誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【點(diǎn)睛】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.9、B【解析】.10、A【解析】

分別計(jì)算出每個(gè)面積,相加得到答案.【詳解】故答案選A【點(diǎn)睛】本題考查了圖像的表面積,意在考查學(xué)生的計(jì)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用同角三角函數(shù)的基本關(guān)系將弦化切,再代入計(jì)算可得.【詳解】解:,故答案為:【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系,齊次式的計(jì)算,屬于基礎(chǔ)題.12、.【解析】

先利用等比中項(xiàng)的性質(zhì)計(jì)算出的值,然后由可求出的值.【詳解】由等比中項(xiàng)的性質(zhì)可得,得,所以,,,故答案為.【點(diǎn)睛】本題考查等比數(shù)列公比的計(jì)算,充分利用等比中項(xiàng)和等比數(shù)列相關(guān)性質(zhì)的應(yīng)用,可簡(jiǎn)化計(jì)算,屬于中等題.13、2【解析】由對(duì)數(shù)的運(yùn)算性質(zhì)可得到,故答案為2.14、【解析】

用表示出,由對(duì)應(yīng)相等即可得出.【詳解】因?yàn)?,所以解得得.【點(diǎn)睛】本題主要考查了平面向量的基本定理,以及向量的三角形法則,平面上任意不共線的一組向量可以作為一組基底.15、【解析】

根據(jù)和關(guān)于直線對(duì)稱可得直線和直線垂直且中點(diǎn)在直線上,從而可求得直線的斜率,利用點(diǎn)斜式可得直線方程.【詳解】由,得:且中點(diǎn)坐標(biāo)為和關(guān)于直線對(duì)稱且在上的方程為:,即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)兩點(diǎn)關(guān)于直線對(duì)稱求解直線方程的問題,關(guān)鍵是明確兩點(diǎn)關(guān)于直線對(duì)稱則連線與對(duì)稱軸垂直,且中點(diǎn)必在對(duì)稱軸上,屬于常考題型.16、【解析】

首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡(jiǎn)得,由于,所以.而,由于,所以【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)首先利用同角三角函數(shù)的基本關(guān)系求出,再利用正弦定理求解即可.(2)求出梯形的高,再利用三角形的面積求解即可.【詳解】解:(1)在梯形中,,,,.可得,由正弦定理可得:.(2)過作,交的延長(zhǎng)線于則即梯形的高為,因?yàn)榈拿娣e等于,,,,【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,三角形面積公式的應(yīng)用,屬于中檔題.18、(1)證明見解析;(2).【解析】

(1)由平面得出,由底面為正方形得出,再利用直線與平面垂直的判定定理可證明平面;(2)由勾股定理計(jì)算出,由點(diǎn)為線段的中點(diǎn)得知點(diǎn)到平面的距離等于,并計(jì)算出的面積,最后利用錐體的體積公式可計(jì)算出三棱錐的體積.【詳解】(1)平面,平面,,又為正方形,,又平面,平面,,平面;(2)由題意知:,又,,,點(diǎn)到面的距離為,.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查三棱錐體積的計(jì)算,在計(jì)算三棱錐的體積時(shí),充分利用題中的線面垂直關(guān)系和平面與平面垂直的關(guān)系,尋找合適的底面和高來進(jìn)行計(jì)算,考查計(jì)算能力與推理能力,屬于中等題.19、(1)15種;(2);(3)【解析】

(1)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽,利用列舉法即可得到所有可能的結(jié)果.(2利用列舉法得到“丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽”的基本事件的個(gè)數(shù),利用古典概型,即可求解;(3)由兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)有,,,,共4種,利用古典概型,即可求解.【詳解】(1)由題意,從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽,所有可能的結(jié)果為,,,,,,,,,,,,,,,共15種.(2)因?yàn)楸麉f(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽,所以編號(hào)為,的兩名運(yùn)動(dòng)員至少有一人被抽到,其結(jié)果為:設(shè)“丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽”為事件,,,,,,,,,,共9種,所以丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率.(3)兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)有,,,,共4種,參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率為.【點(diǎn)睛】本題主要考查了古典概型及其概率的計(jì)算問題,其中解答中準(zhǔn)確利用列舉法的基本事件的總數(shù),找出所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(1).(2)最大值是2,取得最大值時(shí)的的取值集合是.(3)【解析】

(1)利用三角恒等變換化簡(jiǎn)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)區(qū)間;(2)根據(jù)的解析式以及正弦函數(shù)的最值,求得函數(shù)的最大值,以及取得最大值時(shí)的的取值集合;(3)根據(jù)題設(shè)條件求得,再利用二倍角的余弦公式求的值.【詳解】(1),令,解得,所以的單調(diào)遞減區(qū)間為;(2)由(1)知,故的最大值為2,此時(shí),,解得,所以的最大值是2,取得最大值時(shí)的的取值集合是;(3),即,所以,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的恒等變換,考查正弦型函數(shù)的圖象和性質(zhì),熟練掌握正弦型函數(shù)的圖象和性質(zhì)是答題關(guān)鍵,屬于中檔題.21、(1)見解析(2)3+25【解析】試題分析:(Ⅰ)由四邊形ABCD為菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由線面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)設(shè)AB=x,通過解直角三角形將AG、GC、GB、GD用x表示出來,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根據(jù)條件三棱錐E-ACD的體積為63求出x,即可求出三棱錐E-ACD試題解析:(Ⅰ)因?yàn)樗倪呅蜛BCD為菱形,所以AC⊥BD,因?yàn)锽E⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論