




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河北省唐山市重點初中數(shù)學高一下期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含2.如圖,某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B. C. D.33.某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是A. B. C. D.4.已知數(shù)列的通項公式,前項和為,則關(guān)于數(shù)列、的極限,下面判斷正確的是()A.數(shù)列的極限不存在,的極限存在B.數(shù)列的極限存在,的極限不存在C.數(shù)列、的極限均存在,但極限值不相等D.數(shù)列、的極限均存在,且極限值相等5.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.6.已知,,,則()A. B. C.-7 D.77.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)8.已知弧度數(shù)為2的圓心角所對的弦長也是2,則這個圓心角所對的弧長是()A.2 B. C. D.9.不等式的解集為()A. B.C. D.10.已知,則角的終邊所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.的值域是______.12.若x、y滿足約束條件,則的最大值為________.13.若是等差數(shù)列,首項,,,則使前項和最大的自然數(shù)是________.14.已知向量,且,則_______.15.若,則滿足的的取值范圍為______________;16.已知數(shù)列{}滿足,若數(shù)列{}單調(diào)遞增,數(shù)列{}單調(diào)遞減,數(shù)列{}的通項公式為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.18.如果定義在上的函數(shù),對任意的,都有,則稱該函數(shù)是“函數(shù)”.(I)分別判斷下列函數(shù):①;②;③,是否為“函數(shù)”?(直接寫出結(jié)論)(II)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍.(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與19.已知函數(shù).(1)求證:;(2)若角滿足,求銳角的取值范圍.20.某高中為了選拔學生參加“全國高中數(shù)學聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中a的值;(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).21.李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:單價(千元)銷量(百件)已知.(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.(參考公式:線性回歸方程中的估計值分別為)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先把兩個圓的一般方程轉(zhuǎn)化為標準方程,求出其圓心坐標和半徑,再比較圓心距與半徑的關(guān)系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關(guān)系是相離.故選:B【點睛】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡單題.2、A【解析】
首先根據(jù)三視圖畫出幾何體的直觀圖,進一步利用幾何體的體積公式求出結(jié)果.【詳解】解:根據(jù)幾何體得三視圖轉(zhuǎn)換為幾何體為:故:V.故選:A.【點睛】本題考查的知識要點:三視圖和幾何體之間的轉(zhuǎn)換,幾何體的體積公式的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題.3、B【解析】試題分析:由題意,這是幾何概型問題,班車每30分鐘發(fā)出一輛,到達發(fā)車站的時間總長度為40,等車不超過10分鐘的時間長度為20,故所求概率為,選B.【考點】幾何概型【名師點睛】這是全國卷首次考查幾何概型,求解幾何概型問題的關(guān)鍵是確定“測度”,常見的測度有長度、面積、體積等.4、D【解析】
分別考慮與的極限,然后作比較.【詳解】因為,又,所以數(shù)列、的極限均存在,且極限值相等,故選D.【點睛】本題考查數(shù)列的極限的是否存在的判斷以及計算,難度一般.注意求解的極限時,若是分段數(shù)列求和的形式,一定要將多段數(shù)列均考慮到.5、D【解析】
根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.6、C【解析】
把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點睛】本題考查同角間的三角函數(shù)關(guān)系,考查兩角和的正切公式,解題關(guān)鍵是把已知等式平方,并把1用代替,以求得.7、B【解析】
由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【詳解】由題,因為為一元二次不等式,所以a≠0又因為ax所以a>0Δ=故選B【點睛】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】
先由已知條件求出扇形的半徑為,再結(jié)合弧長公式求解即可.【詳解】解:設(shè)扇形的半徑為,由弧度數(shù)為2的圓心角所對的弦長也是2,可得,由弧長公式可得:這個圓心角所對的弧長是,故選:B.【點睛】本題考查了扇形的弧長公式,重點考查了運算能力,屬基礎(chǔ)題.9、B【解析】
把不等式左邊的二次三項式因式分解后求出二次不等式對應方程的兩根,結(jié)合二次函數(shù)的圖象可得二次不等式的解集.【詳解】由,得(x?1)(x+3)>0,解得x<?3或x>1.所以原不等式的解為,故選:B.【點睛】本題考查一元二次不等式的解法,求出二次方程的根結(jié)合二次函數(shù)的圖象可得解集,屬于基礎(chǔ)題.10、D【解析】由可知:則的終邊所在的象限為第四象限故選二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
對進行整理,得到正弦型函數(shù),然后得到其值域,得到答案.【詳解】,因為所以的值域為.故答案為:【點睛】本題考查輔助角公式,正弦型函數(shù)的值域,屬于簡單題.12、18【解析】
先作出不等式組所表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:作出不等式組所表示的平面區(qū)域,如圖所示,由圖可得:目標函數(shù)所在直線過點時,取最大值,即,故答案為:.【點睛】本題考查了簡單的線性規(guī)劃問題,重點考查了作圖能力,屬基礎(chǔ)題.13、【解析】
由已知條件推導出,,由此能求出使前項和成立的最大自然數(shù)的值.【詳解】解:等差數(shù)列,首項,,,,.如若不然,,則,而,得,矛盾,故不可能.使前項和成立的最大自然數(shù)為.故答案為:.【點睛】本題考查等差數(shù)列的前項和取最大值時的值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的通項公式的合理運用.14、【解析】
先由向量共線,求出,再由向量模的坐標表示,即可得出結(jié)果.【詳解】因為,且,所以,解得,所以,因此.故答案為【點睛】本題主要考查求向量的模,熟記向量共線的坐標表示,以及向量模的坐標表示即可,屬于基礎(chǔ)題型.15、【解析】
本題首先可確定在區(qū)間上所對應的的值,然后可結(jié)合正弦函數(shù)圖像得出不等式的解集.【詳解】當時,令,解得或,如圖,繪出正弦函數(shù)圖像,結(jié)合函數(shù)圖像可知,當時,的解集為【點睛】本題考查三角函數(shù)不等式的解法,考查對正弦函數(shù)性質(zhì)的理解,考查計算能力,體現(xiàn)了基礎(chǔ)性,是簡單題.16、【解析】
分別求出{}、{}的通項公式,再統(tǒng)一形式即可得解?!驹斀狻拷猓焊鶕?jù)題意,又單調(diào)遞減,{}單調(diào)遞減增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,綜上,【點睛】本題考查了等比數(shù)列性質(zhì)的靈活運用,考查了分類思想和運算能力,屬于難題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質(zhì)可求出c.【詳解】(1),,,故數(shù)列是以1為首項,4為公差的等差數(shù)列..(2)由(1)知,,,,,,法1:,,成等比數(shù)列,,即,整理得:,或.①當時,,所以(定值),滿足為等差數(shù)列,②當時,,,,,不滿足,故此時數(shù)列不為等差數(shù)列(舍去).法2:因為為等差數(shù)列,所以,即,解得或.①當時,滿足,,成等比數(shù)列,②當時,,,,不滿足,,成等比數(shù)列(舍去),綜上可得.【點睛】本題考查等差數(shù)列的通項及求和,等差數(shù)列、等比數(shù)列性質(zhì)的應用,解決此類問題通常借助方程思想列方程(組)求解,屬于中等題.18、(I)①、②是“函數(shù)”,③不是“函數(shù)”;(II)的取值范圍為;(III),【解析】試題分析:(1)根據(jù)“β函數(shù)”的定義判定.①、②是“β函數(shù)”,③不是“β函數(shù)”;(2)由題意,對任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由題意,對任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得實數(shù)a的取值范圍(3)對任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,驗證。(I)①、②是“函數(shù)”,③不是“函數(shù)”.(II)由題意,對任意的,,即.因為,所以.故.由題意,對任意的,,即.故實數(shù)的取值范圍為.(Ⅲ)()對任意的(a)若且,則,,這與在上單調(diào)遞增矛盾,(舍),(b)若且,則,這與是“函數(shù)”矛盾,(舍).此時,由的定義域為,故對任意的,與恰有一個屬于,另一個屬于.()假設(shè)存在,使得,則由,故.(a)若,則,矛盾,(b)若,則,矛盾.綜上,對任意的,,故,即,則.()假設(shè),則,矛盾.故故,.經(jīng)檢驗,.符合題意點睛:此題是新定義的題目,根據(jù)已知的新概念,新信息來馬上應用到題型中,根據(jù)函數(shù)的定義即函數(shù)沒有關(guān)于原點對稱的部分即可,故可以從圖像的角度來研究函數(shù);第三問可以假設(shè)存在,最后推翻結(jié)論即可。19、(1)證明見解析;(2).【解析】
(1)根據(jù)函數(shù)的解析式化簡計算可得出;(2)由(1)得,由,可得,并推導出函數(shù)為上的增函數(shù),可得出,由為銳角可得出,由此可得出銳角的取值范圍.【詳解】(1),;(2)任取、,且,,,,,所以,函數(shù)是上的增函數(shù),由(1)知:即,由,得,又,即有,故有,即,為銳角,則,,的取值范圍是.【點睛】本題考查利用解析式化簡計算,同時也考查了利用函數(shù)的單調(diào)性解不等式,涉及三角不等式的求解,考查計算能力,屬于中等題.20、(1)(2)平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80【解析】
(1)利用頻率分布直方圖的性質(zhì),列出方程,即可求解;(2)由頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,即可求解.【詳解】(1)由頻率分布直方圖的性質(zhì),可得,解得.(2)由頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,可得平均數(shù)為:中位數(shù)為x,則,解得.根據(jù)眾數(shù)的概念,可得此頻率分布直方圖的眾數(shù)為:80,因此估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80.【點睛】本題主要考查了頻率分布直方圖的性質(zhì),平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術(shù)品市場藝術(shù)市場風險識別與評估考核試卷
- 外貿(mào)英語函電保險課件
- 酸堿反應全解析
- 塑造健康生活
- 碩士論文寫作指導
- 天津中德應用技術(shù)大學《再生醫(yī)學》2023-2024學年第一學期期末試卷
- 江蘇省連云港市海州區(qū)市級名校2025屆初三第一次調(diào)研考試(生物試題理)試卷含解析
- 山東服裝職業(yè)學院《中醫(yī)推拿與養(yǎng)生》2023-2024學年第二學期期末試卷
- 天津醫(yī)學高等??茖W?!督虒W方案設(shè)計技能訓練》2023-2024學年第二學期期末試卷
- 江西中醫(yī)藥大學《大學生職業(yè)發(fā)展與就業(yè)指導》2023-2024學年第一學期期末試卷
- 人工智能訓練師理論知識考核要素細目表五級
- 2024年貴州省中考理科綜合試卷(含答案)
- 110kV變電站專項電氣試驗及調(diào)試方案
- DL-T901-2017火力發(fā)電廠煙囪(煙道)防腐蝕材料
- GB/T 3428-2024架空導線用鍍鋅鋼線
- ISO 15609-1 金屬材料焊接工藝規(guī)程及評定-焊接工藝規(guī)范中文版
- MOOC 英語語法與寫作-暨南大學 中國大學慕課答案
- 2024年山東省濟南市歷下區(qū)中考二模地理試題
- 電子書 -《商業(yè)的底層邏輯》
- 人居環(huán)境科學市公開課一等獎省賽課微課金獎課件
- 4.2 應對挫折提升抗逆力(高效教案)-【中職專用】中職思想政治《心理健康與職業(yè)生涯》(高教版2023·基礎(chǔ)模塊)
評論
0/150
提交評論