張家口市重點中學2025屆高一下數學期末監(jiān)測試題含解析_第1頁
張家口市重點中學2025屆高一下數學期末監(jiān)測試題含解析_第2頁
張家口市重點中學2025屆高一下數學期末監(jiān)測試題含解析_第3頁
張家口市重點中學2025屆高一下數學期末監(jiān)測試題含解析_第4頁
張家口市重點中學2025屆高一下數學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

張家口市重點中學2025屆高一下數學期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線x+ay+4=0與直線ax+4y-3=0互相平行,則實數a的值為()A.±2 B.2 C.-2 D.02.某林區(qū)改變植樹計劃,第一年植樹增長率200%,以后每年的植樹增長率都是前一年植樹增長率的12,若成活率為100%,經過4A.14 B.454 C.63.以下說法正確的是()A.零向量與單位向量的模相等B.模相等的向量是相等向量C.已知均為單位向量,若,則與的夾角為D.向量與向量是共線向量,則四點在一條直線上4.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進行統(tǒng)計后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是()A.4月份人均用電量人數最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協助收費,選到的居民用電量在[30,40)一組的概率為15.圓與圓恰有三條公切線,則實數的值是()A.4 B.6 C.16 D.366.如圖,是圓的直徑,,假設你往圓內隨機撒一粒黃豆,則它落到陰影部分的概率為()A. B. C. D.7.已知函數,則有A.的圖像關于直線對稱 B.的圖像關于點對稱C.的最小正周期為 D.在區(qū)間內單調遞減8.我國古代數學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數是()A.2 B.3 C.4 D.19.如圖所示,在正方形ABCD中,E為AB的中點,F為CE的中點,則A. B.C. D.10.設l是直線,,是兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知數列的前n項和,則___________.12.已知變量,滿足,則的最小值為________.13.已知,是平面內兩個互相垂直的單位向量,若向量滿足,則的最大值是.14.在中,,,,點在線段上,若,則的面積是_____.15.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內角,使得;②存在某鈍角,有;③若,則的最小角小于.16.的內角的對邊分別為.若,則的面積為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.18.已知函數的圖象如圖所示.(1)求這個函數的解析式,并指出它的振幅和初相;(2)求函數在區(qū)間上的最大值和最小值,并指出取得最值時的的值.19.已知,,與的夾角是(1)計算:①,②;(2)當為何值時,與垂直?20.某種筆記本的單價是5元,買個筆記本需要y元,試用函數的三種表示法表示函數.21.設二次函數.(1)若對任意實數,恒成立,求實數x的取值范圍;(2)若存在,使得成立,求實數m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據兩直線平性的必要條件可得4-a【詳解】∵直線x+ay+4=0與直線ax+4y-3=0互相平行;∴4×1-a?a=0,即4-a2=0當a=2時,直線分別為x+2y+4=0和2x+4y-3=0,平行,滿足條件當a=-2時,直線分別為x-2y+4=0和-2x+4y-3=0,平行,滿足條件;所以a=±2;故答案選A【點睛】本題考查兩直線平行的性質,解題時注意平行不包括重合的情況,屬于基礎題。2、B【解析】

由題意知增長率形成以首項為2,公比為12的等比數列,從而第n年的增長率為12n-2,則第n【詳解】由題意知增長率形成以首項為2,公比為12的等比數列,從而第n年的增長率為1則第n年的林區(qū)的樹木數量為an∴a1=3a0,a因此,經過4年后,林區(qū)的樹木量是原來的樹木量的454【點睛】本題考查數列的性質和應用,解題的關鍵在于建立數列的遞推關系式,然后逐項進行計算,考查分析問題和解決問題的能力,屬于中等題.3、C【解析】

根據零向量、單位向量、相等向量,向量的模、向量共線、向量數量積的運算的知識分析選項,由此確定正確選項.【詳解】對于A選項,零向量的模是,單位向量的模是,兩者不相等,故A選項說法錯誤.對于B選項,兩個向量大小和方向都相等才是相等向量,故B選項說法錯誤.對于C選項,由,故C選項說法正確.對于D選項,向量與向量是共線向量,但是這兩個向量沒有公共點,所以無法判斷是否在一條直線上.故D選項說法錯誤.故選:C【點睛】本小題主要考查向量的有關概念,考查向量數量積的運算,屬于基礎題.4、C【解析】

根據頻率分布直方圖逐一計算分析.【詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【點睛】本題考查利用頻率分布直方圖求解相關量,難度較易.頻率分布直方圖中平均數的求法:每一段的組中值×頻率5、C【解析】

兩圓外切時,有三條公切線.【詳解】圓標準方程為,∵兩圓有三條公切線,∴兩圓外切,∴,.故選C.【點睛】本題考查圓與圓的位置關系,考查直線與圓的位置關系.兩圓的公切線條數:兩圓外離時,有4條公切線,兩圓外切時,有3條公切線,兩圓相交時,有2條公切線,兩圓內切時,有1條公切線,兩圓內含時,無無公切線.6、B【解析】

先根據條件計算出陰影部分的面積,然后計算出整個圓的面積,利用幾何概型中的面積模型即可計算出對應的概率.【詳解】設圓的半徑為,因為,所以,又因為,所以落到陰影部分的概率為.故選:B.【點睛】本題考查幾何概型中的面積模型的簡單應用,難度較易.注意幾何概型的常見概率公式:.7、B【解析】

把函數化簡后再判斷.【詳解】,由正切函數的性質知,A、C、D都錯誤,只有B正確.【點睛】本題考查二倍角公式和正切函數的性質.三角函數的性質問題,一般要把函數化為一個角的一個三角函數形式,然后結合相應的三角函數得出結論.8、B【解析】

將問題轉化為等比數列問題,最終變?yōu)榍蠼獾缺葦盗谢玖康膯栴}.【詳解】根據實際問題可以轉化為等比數列問題,在等比數列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數列的實際應用,難度較易.熟悉等比數列中基本量的計算,對于解決實際問題很有幫助.9、D【解析】

由平面向量基本定理和向量運算求解即可【詳解】根據題意得:,又,,所以.故選D.【點睛】本題主要考查了平面向量的基本定理的簡單應用,屬于基礎題.10、D【解析】

利用空間線線、線面、面面的位置關系對選項進行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質過的平面與相交于,則,又.

所以,所以有,所以正確.故選:D【點睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、17【解析】

根據所給的通項公式,代入求得,并由代入求得.即可求得的值.【詳解】數列的前n項和,則,而,,所以,則,故答案為:.【點睛】本題考查了數列前n項和通項公式的應用,遞推法求數列的項,屬于基礎題.12、0【解析】

畫出可行域,分析目標函數得,當在y軸上截距最小時,即可求出的最小值.【詳解】作出可行域如圖:聯立得化目標函數為,由圖可知,當直線過點時,在y軸上的截距最小,有最小值為,故填.【點睛】本題主要考查了簡單的線性規(guī)劃,屬于中檔題.13、【解析】

,,是平面內兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內兩個相互垂直的單位向量∴,即,所以當時,即與共線時,取得最大值為,故答案為.14、【解析】

過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.15、①③【解析】

①中,根據直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內,即可判定;②中,利用兩角和的正切公式,化簡得到,根據鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【詳解】由題意,對于①中,在中,當,則,若為直角三角形,則必有一個角在內;若為銳角三角形,則必有一個內角小于等于;若為鈍角三角形,也必有一個角小于內,所以總存在某個內角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【點睛】本題以真假命題為載體,考查了正弦、余弦定理的應用,以及向量的運算及應用,其中解答中熟練應用解三角形的知識和向量的運算進行化簡是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.16、【解析】

本題首先應用余弦定理,建立關于的方程,應用的關系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎知識、基本方法、數學式子的變形及運算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點睛】本題涉及正數開平方運算,易錯點往往是余弦定理應用有誤或是開方導致錯誤.解答此類問題,關鍵是在明確方法的基礎上,準確記憶公式,細心計算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數,屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.18、(1)函數的解析式為,其振幅是2,初相是(2)時,函數取得最大值0;時,函數取得最小值勤-2【解析】

(1)根據圖像寫出,由周期求出,再由點確定的值.(2)根據的取值范圍確定的取值范圍,再由的單調求出最值【詳解】(1)由圖象知,函數的最大值為2,最小值為-2,∴,又∵,∴,,∴.∴函數的解析式為.∵函數的圖象經過點,∴,∴,又∵,∴.故函數的解析式為,其振幅是2,初相是.(2)∵,∴.于是,當,即時,函數取得最大值0;當,即時,函數取得最小值為-2.【點睛】本題考查由圖像確定三角函數、給定區(qū)間求三角函數的最值,屬于基礎題.19、(1)①;②;(2).【解析】

利用數量積的定義求解出的值;(1)將所求模長平方,從而得到關于模長和數量積的式子,代入求得模長的平方,再開平方得到結果;(2)向量互相垂直得到數量積等于零,由此建立方程,解方程求得結果.【詳解】由已知得:(1)①②(2)若與垂直,則即:,解得:【點睛】本題考查利用數量積求解向量的模長、利用數量積與向量垂直的關系求解參數的問題.求解向量的模長關鍵是能夠通過平方運算將問題轉化為模長和數量積運算的形式,從而使問題得以求解.20、見解析.【解析】

根據定義域,分別利用解析法,列表法,圖像法表示即可.【詳解】解:這個函數的定義域是數集.用解析法可將函數表示為,.用列表法可將函數表示為筆記本數12345錢數510152025用圖象法可將函數表示為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論