浙江省名校協(xié)作體2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第1頁(yè)
浙江省名校協(xié)作體2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第2頁(yè)
浙江省名校協(xié)作體2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第3頁(yè)
浙江省名校協(xié)作體2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第4頁(yè)
浙江省名校協(xié)作體2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省名校協(xié)作體2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知兩個(gè)非零向量,滿足,則()A. B.C. D.2.在△ABC中角ABC的對(duì)邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.3.圓的圓心坐標(biāo)和半徑分別為()A. B. C. D.4.在平行四邊形中,,,則點(diǎn)的坐標(biāo)為()A. B. C. D.5.已知為等差數(shù)列的前項(xiàng)和,,,則()A.2019 B.1010 C.2018 D.10116.若直線與直線平行,則實(shí)數(shù)A.0 B.1 C. D.7.,,是空間三條不同的直線,則下列命題正確的是A., B.,C.,,共面 D.,,共點(diǎn),,共面8.已知點(diǎn),點(diǎn)滿足線性約束條件O為坐標(biāo)原點(diǎn),那么的最小值是A. B. C. D.9.若一元二次不等式對(duì)一切實(shí)數(shù)都成立,則的取值范圍是()A. B. C. D.10.在三棱錐中,平面,,,點(diǎn)M為內(nèi)切圓的圓心,若,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知三棱錐(如圖所示),平面,,,,則此三棱錐的外接球的表面積為_(kāi)_____.12.在中,是斜邊的中點(diǎn),,,平面,且,則_____.13.在直角坐標(biāo)系中,直線與直線都經(jīng)過(guò)點(diǎn),若,則直線的一般方程是_____.14.已知變量,滿足,則的最小值為_(kāi)_______.15.在三棱錐中,已知,,則三棱錐內(nèi)切球的表面積為_(kāi)_____.16.函數(shù)的值域?yàn)開(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知平面向量,,.(1)若,求的值;(2)若,與共線,求實(shí)數(shù)的值.18.若是公差不為0的等差數(shù)列的前n項(xiàng)和,且成等比數(shù)列.(1)求數(shù)列的公比.(2)若,求的通項(xiàng)公式.19.針對(duì)國(guó)家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:支持保留不支持歲以下歲以上(含歲)(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;(2)在接受調(diào)查的人中,有人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下:,,,,,,,,,,把這個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)的概率.20.已知平面向量,且(1)若是與共線的單位向量,求的坐標(biāo);(2)若,且,設(shè)向量與的夾角為,求.21.已知直線截圓所得的弦長(zhǎng)為.直線的方程為.(1)求圓的方程;(2)若直線過(guò)定點(diǎn),點(diǎn)在圓上,且,為線段的中點(diǎn),求點(diǎn)的軌跡方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)向量的模的計(jì)算公式,由逐步轉(zhuǎn)化為,即可得到本題答案.【詳解】由題,得,即,,則,所以.故選:C.【點(diǎn)睛】本題主要考查平面向量垂直的等價(jià)條件以及向量的模,化簡(jiǎn)變形是關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.2、D【解析】

首先利用同角三角函數(shù)的關(guān)系式求出sinC的值,進(jìn)一步利用余弦定理和三角形的面積公式及基本不等式的應(yīng)用求出結(jié)果.【詳解】△ABC中角ABC的對(duì)邊分別為a、b、c,cosC,利用同角三角函數(shù)的關(guān)系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,基本不等式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.3、B【解析】

根據(jù)圓的標(biāo)準(zhǔn)方程形式直接確定出圓心和半徑.【詳解】因?yàn)閳A的方程為:,所以圓心為,半徑,故選:B.【點(diǎn)睛】本題考查給定圓的方程判斷圓心和半徑,難度較易.圓的標(biāo)準(zhǔn)方程為,其中圓心是,半徑是.4、A【解析】

先求,再求,即可求D坐標(biāo)【詳解】,∴,則D(6,1)故選A【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,熟記運(yùn)算法則,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題5、A【解析】

利用基本元的思想,將已知條件轉(zhuǎn)化為和的形式,列方程組,解方程組求得,進(jìn)而求得的值.【詳解】由于數(shù)列是等差數(shù)列,故,解得,故.故選:A.【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式的基本量計(jì)算,屬于基礎(chǔ)題.6、B【解析】

根據(jù)兩直線的平行關(guān)系,列出方程,即可求解實(shí)數(shù)的值,得到答案.【詳解】由題意,當(dāng)時(shí),顯然兩條直線不平行,所以;由兩條直線平行可得:,解得,當(dāng)時(shí),直線方程分別為:,,顯然平行,符合題意;當(dāng)時(shí),直線方程分別為,,很顯然兩條直線重合,不合題意,舍去,所以,故選B.【點(diǎn)睛】本題主要考查了兩直線的位置關(guān)系的應(yīng)用,其中解答中熟記兩直線平行的條件,準(zhǔn)去計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.7、B【解析】

解:因?yàn)槿绻粭l直線平行于兩條垂線中的一條,必定垂直于另一條.選項(xiàng)A,可能相交.選項(xiàng)C中,可能不共面,比如三棱柱的三條側(cè)棱,選項(xiàng)D,三線共點(diǎn),可能是棱錐的三條棱,因此錯(cuò)誤.選B.8、D【解析】

點(diǎn)滿足線性約束條件∵令目標(biāo)函數(shù)畫(huà)出可行域如圖所示,聯(lián)立方程解得在點(diǎn)處取得最小值:故選D【點(diǎn)睛】此題主要考查簡(jiǎn)單的線性規(guī)劃問(wèn)題以及向量的內(nèi)積的問(wèn)題,解決此題的關(guān)鍵是能夠找出目標(biāo)函數(shù).9、A【解析】

該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開(kāi)口向下且與x軸沒(méi)有交點(diǎn),從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開(kāi)口向下且與x軸沒(méi)有交點(diǎn),則,解不等式組,得.故本題正確答案為A.【點(diǎn)睛】本題考查一元二次不等式恒成立問(wèn)題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運(yùn)用,屬基礎(chǔ)題.10、C【解析】

求三棱錐的外接球的表面積即求球的半徑,則球心到底面的距離為,根據(jù)正切和MA的長(zhǎng)求PA,再和MA的長(zhǎng)即可通過(guò)勾股定理求出球半徑R,則表面積.【詳解】取BC的中點(diǎn)E,連接AE(圖略).因?yàn)?,所以點(diǎn)M在AE上,因?yàn)椋?,所以,則的面積為,解得,所以.因?yàn)椋?設(shè)的外接圓的半徑為r,則,解得.因?yàn)槠矫鍭BC,所以三棱錐的外接球的半徑為,故三棱錐P-ABC的外接球的表面積為.【點(diǎn)睛】此題關(guān)鍵點(diǎn)通過(guò)題干信息畫(huà)出圖像,平面ABC和底面的內(nèi)切圓圓心確定球心的位置,根據(jù)幾何關(guān)系求解即可,屬于三棱錐求外接球半徑基礎(chǔ)題目.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由于圖形特殊,可將圖形補(bǔ)成長(zhǎng)方體,從而求長(zhǎng)方體的外接球表面積即為所求.【詳解】,,,,平面,將三棱錐補(bǔ)形為如圖的長(zhǎng)方體,則長(zhǎng)方體的對(duì)角線,則【點(diǎn)睛】本題主要考查外接球的相關(guān)計(jì)算,將圖形補(bǔ)成長(zhǎng)方體是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力及空間想象能力.12、【解析】

由EC垂直Rt△ABC的兩條直角邊,可知EC⊥面ABC,再根據(jù)D是斜邊AB的中點(diǎn),AC=6,BC=8,可求得CD的長(zhǎng),根據(jù)勾股定理可求得DE的長(zhǎng).【詳解】如圖,EC⊥面ABC,而CD?面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜邊AB的中點(diǎn),∴CD=5,ED1.故答案為1.【點(diǎn)睛】本題主要考查了線面垂直的判定和性質(zhì)定理,利用勾股定理求線段的長(zhǎng)度,考查了空間想象能力和推理論證能力,屬于基礎(chǔ)題.13、【解析】

點(diǎn)代入的方程求出k,再由求出直線的斜率,即可寫(xiě)出直線的點(diǎn)斜式方程.【詳解】將點(diǎn)代入直線得,,解得,又,,于是的方程為,整理得.故答案為:【點(diǎn)睛】本題考查直線的方程,屬于基礎(chǔ)題.14、0【解析】

畫(huà)出可行域,分析目標(biāo)函數(shù)得,當(dāng)在y軸上截距最小時(shí),即可求出的最小值.【詳解】作出可行域如圖:聯(lián)立得化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),在y軸上的截距最小,有最小值為,故填.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線性規(guī)劃,屬于中檔題.15、【解析】

先計(jì)算出三棱錐的體積,利用等體積法求出三棱錐的內(nèi)切球的半徑,再求出內(nèi)切球的表面積?!驹斀狻咳D中點(diǎn)為E,并連接AE、BE在中,由等腰三角形的性質(zhì)可得,同理則在中點(diǎn)A到邊BE的距離即為點(diǎn)A到平面BCD的距離h,在中,【點(diǎn)睛】本題綜合考查了三棱錐的體積、三棱錐內(nèi)切圓的求法、球的表面積,屬于中檔題.16、【解析】

本題首先可通過(guò)三角恒等變換將函數(shù)化簡(jiǎn)為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因?yàn)椋?【點(diǎn)睛】本題考查通過(guò)三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)4.【解析】

(1)結(jié)合已知求得:,利用平面向量的模的坐標(biāo)表示公式計(jì)算得解.(2)求得:,利用與共線可列方程,解方程即可.【詳解】解:(1),所以.(2),因?yàn)榕c共線,所以,解得.【點(diǎn)睛】本題主要考查了平面向量的模的坐標(biāo)公式及平面向量平行的坐標(biāo)關(guān)系,考查方程思想及計(jì)算能力,屬于基礎(chǔ)題.18、(1)公比為4;(2)【解析】

(1)設(shè),然后根據(jù)相關(guān)條件去計(jì)算公比;(2)由(1)的結(jié)論計(jì)算的表達(dá)式,然后再計(jì)算的通項(xiàng)公式.【詳解】(1)設(shè).∴,∴,.∴,即的公比為4(2)∵,∴,即,當(dāng)時(shí),,當(dāng)時(shí),符合,∴【點(diǎn)睛】(1)已知等差數(shù)列的三項(xiàng)成等比數(shù)列,可利用首項(xiàng)和公差將等式列出,找到首項(xiàng)和公差的關(guān)系;(2)利用計(jì)算通項(xiàng)公式時(shí),要注意驗(yàn)證的情況.19、(1)120;(2).【解析】

(1)參與調(diào)查的總?cè)藬?shù)為20000,其中從持“不支持”態(tài)度的人數(shù)5000中抽取了30人,由此能求出n.(2)總體的平均數(shù)為9,與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的數(shù)有8.2,8.3,9.7,由此能求出任取1個(gè)數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的概率.【詳解】(1)參與調(diào)查的總?cè)藬?shù)為8000+4000+2000+1000+2000+3000=20000,其中不支持態(tài)度的人數(shù)2000+3000=5000中抽取了30人,所以n=.(2)總體的平均數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的數(shù)有8.2,8.3,9.7,所以任取一個(gè)數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的概率.【點(diǎn)睛】本題主要考查了樣本容量的求法,分層抽樣,用列舉法求古典概型的概率,屬于中檔題.20、或【解析】分析:(1)由與共線,可設(shè),又由為單位向量,根據(jù),列出方程即可求得向量的坐標(biāo);(2)根據(jù)向量的夾角公式,即可求解向量與的夾角.詳解:與共線,又,則,為單位向量,,或,則的坐標(biāo)為或,,.點(diǎn)睛:對(duì)于平面向量的運(yùn)算問(wèn)題,通常用到:1、平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;2、由向量的數(shù)量積的性質(zhì)有,,,因此利用平面向量的數(shù)量積可以解決與長(zhǎng)度、角度、垂直等有關(guān)的問(wèn)題;3、本題主要利用向量的模與向量運(yùn)算的靈活轉(zhuǎn)換,應(yīng)用平面向量的夾角公式,建立的方程.21、(1);(2).【解析】

(1)利用點(diǎn)到直線的距離公式得到圓心到直線的距離,利用直線截圓得到的弦長(zhǎng)公式可得半徑r,從而得到圓的方程;(2)由已

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論