版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省鄒城一中2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含2.在三棱錐中,平面,,,點(diǎn)M為內(nèi)切圓的圓心,若,則三棱錐的外接球的表面積為()A. B. C. D.3.函數(shù),,若在區(qū)間上是單調(diào)函數(shù),,則的值為()A. B.2 C.或 D.或24.已知中,,則角()A.60°或120° B.30°或90° C.30° D.90°5.已知直線m,n,平面α,β,給出下列命題:①若m⊥α,n⊥β,且m⊥n,則α⊥β②若m∥α,n∥β,且m∥n,則α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,則m⊥n其中正確的命題是()A.②③ B.①③ C.①④ D.③④6.如圖,正方形的邊長(zhǎng)為2cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原平面圖形的周長(zhǎng)是()cm.A.12 B.16 C. D.7.已知,,且,則實(shí)數(shù)等于()A.-1 B.-9 C.3 D.98.?dāng)?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,且,則()A. B.C. D.9.已知,且,則的最小值為()A.8 B.12 C.16 D.2010.設(shè)正實(shí)數(shù)滿足,則當(dāng)取得最大值時(shí),的最大值為()A.0 B.1 C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.已知無(wú)窮等比數(shù)列的首項(xiàng)為,公比為q,且,則首項(xiàng)的取值范圍是________.12.如圖甲是第七屆國(guó)際數(shù)學(xué)教育大會(huì)(簡(jiǎn)稱)的會(huì)徽?qǐng)D案,會(huì)徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長(zhǎng)度構(gòu)成數(shù)列,則此數(shù)列的通項(xiàng)公式為_____.13.若實(shí)數(shù)滿足不等式組則的最小值是_____.14.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點(diǎn)__________.15.向量滿足,,則向量的夾角的余弦值為_____.16.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時(shí),不等式左邊應(yīng)等于__________。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.18.要測(cè)量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測(cè)得塔頂A的仰角是45°,在D點(diǎn)測(cè)得塔頂A的仰角是30°,并測(cè)得水平面上的∠BCD=120°,CD="40"m,則電視塔的高度為多少?19.如圖,四棱錐中,底面為矩形,面,為的中點(diǎn).(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.20.(1)已知,,且、都是第二象限角,求的值.(2)求證:.21.在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足3(b(1)求角B的大?。唬?)若ΔABC的面積為32,B是鈍角,求b
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
首先把兩個(gè)圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,求出其圓心坐標(biāo)和半徑,再比較圓心距與半徑的關(guān)系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個(gè)圓的位置關(guān)系是相離.故選:B【點(diǎn)睛】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡(jiǎn)單題.2、C【解析】
求三棱錐的外接球的表面積即求球的半徑,則球心到底面的距離為,根據(jù)正切和MA的長(zhǎng)求PA,再和MA的長(zhǎng)即可通過勾股定理求出球半徑R,則表面積.【詳解】取BC的中點(diǎn)E,連接AE(圖略).因?yàn)?,所以點(diǎn)M在AE上,因?yàn)?,,所以,則的面積為,解得,所以.因?yàn)?,所?設(shè)的外接圓的半徑為r,則,解得.因?yàn)槠矫鍭BC,所以三棱錐的外接球的半徑為,故三棱錐P-ABC的外接球的表面積為.【點(diǎn)睛】此題關(guān)鍵點(diǎn)通過題干信息畫出圖像,平面ABC和底面的內(nèi)切圓圓心確定球心的位置,根據(jù)幾何關(guān)系求解即可,屬于三棱錐求外接球半徑基礎(chǔ)題目.3、D【解析】
先根據(jù)單調(diào)性得到的范圍,然后根據(jù)得到的對(duì)稱軸和對(duì)稱中心,考慮對(duì)稱軸和對(duì)稱中心是否在同一周期內(nèi),分析得到的值.【詳解】因?yàn)?,則;又因?yàn)?,則由可知得一條對(duì)稱軸為,又因?yàn)樵趨^(qū)間上是單調(diào)函數(shù),則由可知的一個(gè)對(duì)稱中心為;若與是同一周期內(nèi)相鄰的對(duì)稱軸和對(duì)稱中心,則,則,所以;若與不是同一周期內(nèi)相鄰的對(duì)稱軸和對(duì)稱中心,則,則,所以.【點(diǎn)睛】對(duì)稱軸和對(duì)稱中心的判斷:對(duì)稱軸:,則圖象關(guān)于對(duì)稱;對(duì)稱中心:,則圖象關(guān)于成中心對(duì)稱.4、B【解析】
由正弦定理求得,再求.【詳解】由正弦定理,∴,或,時(shí),,時(shí),.故選:B.【點(diǎn)睛】本題考查正弦定理,在用正弦定理解三角形時(shí),可能會(huì)出現(xiàn)兩解,一定要注意.5、C【解析】
根據(jù)線線、線面和面面有關(guān)定理,對(duì)選項(xiàng)逐一分析,由此得出正確選項(xiàng).【詳解】對(duì)于①,兩個(gè)平面的垂線垂直,那么這兩個(gè)平面垂直.所以①正確.對(duì)于②,與可能相交,此時(shí)并且與兩個(gè)平面的交線平行.所以②錯(cuò)誤.對(duì)于③,直線可能為異面直線,所以③錯(cuò)誤.對(duì)于④,兩個(gè)平面垂直,那么這兩個(gè)平面的垂線垂直.所以④正確.綜上所述,正確命題的序號(hào)為①④.故選:C【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.6、B【解析】
根據(jù)直觀圖與原圖形的關(guān)系,可知原圖形為平行四邊形,結(jié)合線段關(guān)系即可求解.【詳解】根據(jù)直觀圖,可知原圖形為平行四邊形,因?yàn)檎叫蔚倪呴L(zhǎng)為2cm,所以原圖形cm,,則,所以原平面圖形的周長(zhǎng)為,故選:B.【點(diǎn)睛】本題考查了平面圖形直觀圖與原圖形的關(guān)系,由直觀圖求原圖形面積方法,屬于基礎(chǔ)題.7、C【解析】
由可知,再利用坐標(biāo)公式求解.【詳解】因?yàn)?,且,所以,即,解得,故選:C.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,解題關(guān)鍵是明確.8、B【解析】分析:先根據(jù)等比數(shù)列、等差數(shù)列的通項(xiàng)公式表示出、,然后表示出和,然后二者作差比較即可.詳解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故選B.點(diǎn)睛:本題主要考查了等比數(shù)列的性質(zhì).比較兩數(shù)大小一般采取做差的方法.屬于基礎(chǔ)題.9、C【解析】
由題意可得,則,展開后利用基本不等式,即可求出結(jié)果.【詳解】因?yàn)?,且,即為,則,當(dāng)且僅當(dāng),即取得等號(hào),則的最小值為.故選:C.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,注意等號(hào)成立的條件,考查運(yùn)算能力,屬于中檔題.10、B【解析】
x,y,z為正實(shí)數(shù),且,根據(jù)基本不等式得,當(dāng)且僅當(dāng)x=2y取等號(hào),所以x=2y時(shí),取得最大值1,此時(shí),,當(dāng)時(shí),取最大值1,的最大值為1,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)極限存在得出,對(duì)分、和三種情況討論得出與之間的關(guān)系,可得出的取值范圍.【詳解】由于,則.①當(dāng)時(shí),則,;②當(dāng)時(shí),則,;③當(dāng)時(shí),,解得.綜上所述:首項(xiàng)的取值范圍是,故答案為:.【點(diǎn)睛】本題考查極限的應(yīng)用,要結(jié)合極限的定義得出公比的取值范圍,同時(shí)要對(duì)公比的取值范圍進(jìn)行分類討論,考查分類討論思想的應(yīng)用,屬于中等題.12、【解析】
由圖可知,由勾股定理可得,利用等差數(shù)列的通項(xiàng)公式求解即可.【詳解】根據(jù)圖形,因?yàn)槎际侵苯侨切危?是以1為首項(xiàng),以1為公差的等差數(shù)列,,,故答案為.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,等差數(shù)列的定義與通項(xiàng)公式,以及數(shù)形結(jié)合思想的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識(shí)解答問題的能力,屬于與中檔題.13、4【解析】試題分析:由于根據(jù)題意x,y滿足的關(guān)系式,作出可行域,當(dāng)目標(biāo)函數(shù)z=2x+3y在邊界點(diǎn)(2,0)處取到最小值z(mì)=2×2+3×0=4,故答案為4.考點(diǎn):本試題主要考查了線性規(guī)劃的最優(yōu)解的運(yùn)用.點(diǎn)評(píng):解決該試題的關(guān)鍵是解決線性規(guī)劃的小題時(shí),常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域?②求出可行域各個(gè)角點(diǎn)的坐標(biāo)?③將坐標(biāo)逐一代入目標(biāo)函數(shù)?④驗(yàn)證,求出最優(yōu)解.14、【解析】
根據(jù)線性回歸方程一定過樣本中心點(diǎn),計(jì)算這組數(shù)據(jù)的樣本中心點(diǎn),求出和的平均數(shù)即可求解.【詳解】由題意可知,與的線性回歸方程必過樣本中心點(diǎn),,所以線性回歸方程必過.故答案為:【點(diǎn)睛】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點(diǎn)這一特征,屬于基礎(chǔ)題.15、【解析】
通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的余弦函數(shù)值的求法.考查計(jì)算能力.屬于基礎(chǔ)題.16、【解析】
用數(shù)學(xué)歸納法證明不等式(且),第一步,即時(shí),分母從3到6,列出式子,得到答案.【詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時(shí),左邊式子中每項(xiàng)的分母從3開始增大至6,所以應(yīng)是.即為答案.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡(jiǎn)單題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)最大值為,最小值為【解析】
利用二倍角公式、兩角和差正弦公式和輔助角公式可化簡(jiǎn)出;(1)令,解出的范圍即為所求單調(diào)遞增區(qū)間;(2)利用的范圍可求得所處的范圍,整體對(duì)應(yīng)正弦函數(shù)圖象可確定最大值和最小值取得時(shí)的值,進(jìn)而求得最值.【詳解】(1)令,,解得:,的單調(diào)遞增區(qū)間為,(2)當(dāng)時(shí),當(dāng)時(shí),取得最大值,最大值為當(dāng)時(shí),取得最小值,最小值為【點(diǎn)睛】本題考查正弦型函數(shù)單調(diào)區(qū)間和最值的求解問題,涉及到利用兩角和差公式、二倍角公式和輔助角公式化簡(jiǎn)三角函數(shù);關(guān)鍵是能夠靈活應(yīng)用整體對(duì)應(yīng)的方式,結(jié)合正弦函數(shù)的圖象與性質(zhì)來(lái)進(jìn)行求解.18、40m.【解析】試題分析:本題是解三角形的實(shí)際應(yīng)用題,根據(jù)題意分析出圖中的數(shù)據(jù),即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入數(shù)據(jù),運(yùn)算即可得出結(jié)果.試題解析:根據(jù)題意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即電視塔的高度為40m考點(diǎn):解三角形.19、(1)證明見解析(2)到平面的距離為【解析】
試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點(diǎn)O,連結(jié)EO.因?yàn)锳BCD為矩形,所以O(shè)為BD的中點(diǎn).又E為PD的中點(diǎn),所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到平面的距離為d,又因?yàn)镻B=所以又因?yàn)?或),,所以考點(diǎn):線面平行的判定及點(diǎn)到面的距離20、(1);(2)見解析【解析】
(1)利用同角三角函數(shù)間的關(guān)系式的應(yīng)用,可求得cosα,sinβ,再利用兩角差的正弦、余弦與正切公式即可求得cos(α﹣β)的值.(2)利用切化弦結(jié)合二倍角公式化簡(jiǎn)即可證明【詳解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得證【點(diǎn)睛】本題考查兩角和與差的正弦、余弦與正切,考查同角三角函數(shù)間的關(guān)系式的應(yīng)用,屬于中檔題.21、(1)B=π3或2π【解析】
(1)由正弦定理和三角恒等變換的公式,化簡(jiǎn)得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人信用借款抵押協(xié)議模板版A版
- 個(gè)人資產(chǎn)抵押借款協(xié)議樣式版
- 教育科技融合下的農(nóng)村教師課題研究新模式
- 科技發(fā)展與學(xué)術(shù)道德的同步推進(jìn)
- 現(xiàn)代家居風(fēng)格客廳背景墻案例解析
- 2025年度門面房屋租賃合同續(xù)簽文本4篇
- 2025年度個(gè)人旅游借款還款服務(wù)協(xié)議4篇
- 2025年度物流車輛電子監(jiān)控合同協(xié)議4篇
- 農(nóng)業(yè)保險(xiǎn)如何助力農(nóng)業(yè)生產(chǎn)安全
- 游戲化教學(xué)法在幼兒園安全教育中的應(yīng)用探討
- GB/T 16895.3-2024低壓電氣裝置第5-54部分:電氣設(shè)備的選擇和安裝接地配置和保護(hù)導(dǎo)體
- GJB9001C質(zhì)量管理體系要求-培訓(xùn)專題培訓(xùn)課件
- 二手車車主寄售協(xié)議書范文范本
- 窗簾采購(gòu)?fù)稑?biāo)方案(技術(shù)方案)
- 基于學(xué)習(xí)任務(wù)群的小學(xué)語(yǔ)文單元整體教學(xué)設(shè)計(jì)策略的探究
- 人教版高中物理必修一同步課時(shí)作業(yè)(全冊(cè))
- 食堂油鍋起火演練方案及流程
- 《呼吸衰竭的治療》
- 2024年度醫(yī)患溝通課件
- 2024年中考政治總復(fù)習(xí)初中道德與法治知識(shí)點(diǎn)總結(jié)(重點(diǎn)標(biāo)記版)
- 2024年手術(shù)室的應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論