![2024屆東莞市重點中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view3/M02/3D/01/wKhkFmZ5ciuAGfIaAAJ8Aq1eiRg030.jpg)
![2024屆東莞市重點中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view3/M02/3D/01/wKhkFmZ5ciuAGfIaAAJ8Aq1eiRg0302.jpg)
![2024屆東莞市重點中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view3/M02/3D/01/wKhkFmZ5ciuAGfIaAAJ8Aq1eiRg0303.jpg)
![2024屆東莞市重點中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view3/M02/3D/01/wKhkFmZ5ciuAGfIaAAJ8Aq1eiRg0304.jpg)
![2024屆東莞市重點中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view3/M02/3D/01/wKhkFmZ5ciuAGfIaAAJ8Aq1eiRg0305.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆東莞市重點中學(xué)中考試題猜想數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在直角坐標平面內(nèi),已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.2.某大學(xué)生利用課余時間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關(guān)系式為y=–4x+440,要獲得最大利潤,該商品的售價應(yīng)定為A.60元B.70元C.80元D.90元3.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=4.某校在國學(xué)文化進校園活動中,隨機統(tǒng)計50名學(xué)生一周的課外閱讀時間如表所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()學(xué)生數(shù)(人)5814194時間(小時)678910A.14,9 B.9,9 C.9,8 D.8,95.x=1是關(guān)于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.16.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.7.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.8.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π9.一個圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.610.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發(fā)且運動速度相同,點M到點B時兩點同時停止運動,設(shè)點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結(jié)論的序號都填上)12.如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,若弦CD=2,則圖中陰影部分的面積為.13.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內(nèi)部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.14.雙察下列等式:,,,…則第n個等式為_____.(用含n的式子表示)15.在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的處,則AP的長為__________.16.我國明代數(shù)學(xué)家程大位的名著《直指算法統(tǒng)宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?”意思是:有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分1個,正好分完,試問大、小和尚各幾人?設(shè)大、小和尚各有x,y人,則可以列方程組__________.三、解答題(共8題,共72分)17.(8分)某校為表彰在“書香校園”活動中表現(xiàn)積極的同學(xué),決定購買筆記本和鋼筆作為獎品.已知5個筆記本、2支鋼筆共需要100元;4個筆記本、7支鋼筆共需要161元(1)筆記本和鋼筆的單價各多少元?(2)恰好“五一”,商店舉行“優(yōu)惠促銷”活動,具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買x個筆記本需要y1元,買x支鋼筆需要y2元;求y1、y2關(guān)于x的函數(shù)解析式;(3)若購買同一種獎品,并且該獎品的數(shù)量超過10件,請你分析買哪種獎品省錢.18.(8分)某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產(chǎn)B產(chǎn)品要超過38件,問有哪幾種符合條件的生產(chǎn)方案?(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應(yīng)選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請直接寫出方案.19.(8分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.(1)求每件甲種、乙種玩具的進價分別是多少元?(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?20.(8分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;21.(8分)已知,求代數(shù)式的值.22.(10分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.23.(12分)某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學(xué)方式電動車私家車公共交通自行車步行其他某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應(yīng)的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學(xué)方式視為“綠色出行”,請估計該校每天“綠色出行”的學(xué)生人數(shù).24.某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數(shù)關(guān)系式;(2)從所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式;(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先求出點M到x軸、y軸的距離,再根據(jù)直線和圓的位置關(guān)系得出即可.【詳解】解:∵點M的坐標是(4,3),
∴點M到x軸的距離是3,到y(tǒng)軸的距離是4,
∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,
∴r的取值范圍是3<r<4,
故選:D.【點睛】本題考查點的坐標和直線與圓的位置關(guān)系,能熟記直線與圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵.2、C【解析】設(shè)銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.3、D【解析】
根據(jù)平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【詳解】解:當或時,,
即或.
所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例.也考查了平行線分線段成比例定理的逆定理.4、C【解析】
解:觀察、分析表格中的數(shù)據(jù)可得:∵課外閱讀時間為1小時的人數(shù)最多為11人,∴眾數(shù)為1.∵將這組數(shù)據(jù)按照從小到大的順序排列,第25個和第26個數(shù)據(jù)的均為2,∴中位數(shù)為2.故選C.【點睛】本題考查(1)眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);(2)中位數(shù)的確定要分兩種情況:①當數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為奇數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的那個數(shù)就是中位數(shù);②當數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為偶數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).5、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.6、D【解析】
根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、B【解析】
先用含有x的式子表示2015年的綠化面積,進而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應(yīng)用,找準其中的等式關(guān)系式解答此題的關(guān)鍵.8、B【解析】
由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
則∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.9、C【解析】設(shè)母線長為R,底面半徑是3cm,則底面周長=6π,側(cè)面積=3πR=12π,
∴R=4cm.故選C.10、A【解析】
根據(jù)題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點睛】本題為動點問題的函數(shù)圖象,解答關(guān)鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.12、.【解析】試題分析:連結(jié)OC、OD,因為C、D是半圓O的三等分點,所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點:扇形的面積計算.13、50°【解析】
延長BF交CD于G,根據(jù)折疊的性質(zhì)和平行四邊形的性質(zhì),證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質(zhì),平行四邊形的性質(zhì),全等三角形的判定與性質(zhì).證明△BCG≌△DAE是解答本題的關(guān)鍵.14、=【解析】
探究規(guī)律后,寫出第n個等式即可求解.【詳解】解:…則第n個等式為故答案為:【點睛】本題主要考查二次根式的應(yīng)用,找到規(guī)律是解題的關(guān)鍵.15、或【解析】
①點A落在矩形對角線BD上,如圖1,∵AB=4,BC=3,∴BD=5,根據(jù)折疊的性質(zhì),AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,設(shè)AP=x,則BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②點A落在矩形對角線AC上,如圖2,根據(jù)折疊的性質(zhì)可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案為或.16、3x+【解析】
根據(jù)100個和尚分100個饅頭,正好分完.大和尚一人分3個,小和尚3人分一個得到等量關(guān)系為:大和尚的人數(shù)+小和尚的人數(shù)=100,大和尚分得的饅頭數(shù)+小和尚分得的饅頭數(shù)=100,依此列出方程組即可.【詳解】設(shè)大和尚x人,小和尚y人,由題意可得x+y=故答案為x+y=【點睛】本題考查了由實際問題抽象出二元一次方程組,關(guān)鍵以和尚數(shù)和饅頭數(shù)作為等量關(guān)系列出方程組.三、解答題(共8題,共72分)17、(1)筆記本單價為14元,鋼筆單價為15元;(2)y1=14×0.9x=12.6x,y2=15x0≤x≤10【解析】(1)設(shè)每個文具盒z元,每支鋼筆y元,可列方程組得5z+2y=100,4z+7y=161.解之得答:每個文具盒14元,每支鋼筆15元.(2)由題意知,y1關(guān)于x的函數(shù)關(guān)系式是y1=14×90%x,即y1=12.6x.買鋼筆10支以下(含10支)沒有優(yōu)惠.故此時的函數(shù)關(guān)系式為y2=15x:當買10支以上時,超出的部分有優(yōu)惠,故此時的函數(shù)關(guān)系式為y2=15×10+15×80%(x-10),即y2=12x+1.(3)因為x>10,所以y2=12x+1.當y1<y2,即12.6x<12x+1時,解得x<2;當y1=y(tǒng)2,即12.6x=12x+1時,解得x=2;當y1>y2,即12.6x>12x+1時,解得x>2.綜上所述,當購買獎品超過10件但少于2件時,買文具盒省錢;當購買獎品2件時,買文具盒和買鋼筆錢數(shù)相等;當購買獎品超過2件時,買鋼筆省錢.18、(1)甲種材料每千克25元,乙種材料每千克35元.(2)共有四種方案;(3)生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.【解析】試題分析:(1)、首先設(shè)甲種材料每千克x元,乙種材料每千克y元,根據(jù)題意列出二元一次方程組得出答案;(2)、設(shè)生產(chǎn)B產(chǎn)品a件,則A產(chǎn)品(60-a)件,根據(jù)題意列出不等式組,然后求出a的取值范圍,得出方案;得出生產(chǎn)成本w與a的函數(shù)關(guān)系式,根據(jù)函數(shù)的增減性得出答案.試題解析:(1)設(shè)甲種材料每千克x元,乙種材料每千克y元,依題意得:x+y=602y+3y=155解得:答:甲種材料每千克25元,乙種材料每千克35元.(2)生產(chǎn)B產(chǎn)品a件,生產(chǎn)A產(chǎn)品(60-a)件.依題意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值為非負整數(shù)∴a=39、40、41、42∴共有如下四種方案:A種21件,B種39件;A種20件,B種40件;A種19件,B種41件;A種18件,B種42件(3)、答:生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.設(shè)生產(chǎn)成本為W元,則W與a的關(guān)系式為:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W隨a增大而增大∴當a=39時,總成本最低.考點:二元一次方程組的應(yīng)用、不等式組的應(yīng)用、一次函數(shù)的應(yīng)用.19、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)4.【解析】試題分析:(1)設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據(jù)已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同可列方程求解.(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據(jù)甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.試題解析:設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經(jīng)檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數(shù),甲種玩具的件數(shù)少于乙種玩具的件數(shù),∴y取20,21,22,23,共有4種方案.考點:分式方程的應(yīng)用;一元一次不等式組的應(yīng)用.20、1【解析】
原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值計算即可得到結(jié)果.【詳解】原式=4-1+2-+=1.【點睛】此題考查了實數(shù)的運算,絕對值,零指數(shù)冪、負整數(shù)指數(shù)冪,以及特殊角的三角函數(shù)值,熟練掌握運算法則是解本題的關(guān)鍵.21、12【解析】解:∵,∴.∴.將代數(shù)式應(yīng)用完全平方公式和平方差公式展開后合并同類項,將整體代入求值.22、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】
(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品攝影拍攝合同范本
- 健身房私教合同范本
- 2025年度新型綠色建筑租賃合同范本
- 出兌房屋合同范例
- ppp合同范例實例
- 保管勞動合同范例
- 2025年度城市綜合體規(guī)劃設(shè)計咨詢合同
- 廣東省x景區(qū)旅游開發(fā)項目可行性研究報告
- 2025年中國新風量檢測儀行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 買債權(quán)居間合同范本
- 綠城桃李春風推廣方案
- 對使用林地的監(jiān)管事中事后監(jiān)督管理
- 體質(zhì)健康概論
- 檔案管理流程優(yōu)化與效率提升
- 2023高考語文實用類文本閱讀-新聞、通訊、訪談(含答案)
- 人工智能在商場應(yīng)用
- (完整word版)大格子作文紙模板(帶字數(shù)統(tǒng)計)
- 高考語文復(fù)習(xí):小說閱讀主觀題題型探究-解讀《理水》
- revit簡單小別墅教程
- 第二章 第一節(jié) CT設(shè)備基本運行條件
- 藍印花布鑒賞課件
評論
0/150
提交評論