版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆建湖實中教育集團中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米22.如圖,菱形中,對角線AC、BD交于點O,E為AD邊中點,菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.143.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數(shù)關系的圖象是()A. B. C. D.4.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應相等的兩個三角形全等D.有一邊對應相等的兩個等邊三角形全等5.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里6.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.7.為了支援地震災區(qū)同學,某校開展捐書活動,九(1)班40名同學積極參與.現(xiàn)將捐書數(shù)量繪制成頻數(shù)分布直方圖如圖所示,則捐書數(shù)量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.48.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.9.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應是()A.110 B.158 C.168 D.17810.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.11.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)12.若代數(shù)式,,則M與N的大小關系是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:(﹣)﹣2﹣2cos60°=_____.14.在平面直角坐標系xOy中,點A(4,3)為⊙O上一點,B為⊙O內一點,請寫出一個符合條件要求的點B的坐標______.15.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.16.袋中裝有紅、綠各一個小球,隨機摸出1個小球后放回,再隨機摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.17.已知函數(shù)y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點,則k的值為_____.18.寫出一個比大且比小的有理數(shù):______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我市某中學舉辦“網(wǎng)絡安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計算出a、b、c的值;結合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.20.(6分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.求雙曲線解析式;點P在x軸上,如果△ACP的面積為5,求點P的坐標.21.(6分)計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).22.(8分)計算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣23.(8分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.24.(10分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關系式;當甲、乙兩個商場的收費相同時,所買商品為多少件?當所買商品為5件時,應選擇哪個商場更優(yōu)惠?請說明理由.25.(10分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.26.(12分)我市某企業(yè)接到一批產品的生產任務,按要求必須在14天內完成.已知每件產品的出廠價為60元.工人甲第x天生產的產品數(shù)量為y件,y與x滿足如下關系:工人甲第幾天生產的產品數(shù)量為70件?設第x天生產的產品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?27.(12分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.2、A【解析】
根據(jù)菱形的四條邊都相等求出AB,再根據(jù)菱形的對角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點,∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點睛】本題考查了菱形的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.3、B【解析】
△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關系的圖象.【詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數(shù)關系的圖象是B;故選B.【點睛】本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應注意自變量的取值范圍.4、C【解析】解:A.外角為120°,則相鄰的內角為60°,根據(jù)有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當兩個三角形中兩邊及一角對應相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.5、D【解析】
根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.6、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.7、B【解析】∵在5.5~6.5組別的頻數(shù)是8,總數(shù)是40,∴=0.1.故選B.8、A【解析】分析:根據(jù)中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關鍵是找出圖形的對稱中心與對稱軸.9、B【解析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.10、B【解析】
俯視圖是從上面看幾何體得到的圖形,據(jù)此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.11、C【解析】
作點D關于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.12、C【解析】∵,∴,∴.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】
按順序先進行負指數(shù)冪的運算、代入特殊角的三角函數(shù)值,然后再進行減法運算即可.【詳解】(﹣)﹣2﹣2cos60°=4-2×=3,故答案為3.【點睛】本題考查了實數(shù)的運算,涉及了負指數(shù)冪、特殊角的三角函數(shù)值,熟練掌握相關的運算法則是解題的關鍵.14、(2,2).【解析】
連結OA,根據(jù)勾股定理可求OA,再根據(jù)點與圓的位置關系可得一個符合要求的點B的坐標.【詳解】如圖,連結OA,OA==5,∵B為⊙O內一點,∴符合要求的點B的坐標(2,2)答案不唯一.故答案為:(2,2).【點睛】考查了點與圓的位置關系,坐標與圖形性質,關鍵是根據(jù)勾股定理得到OA的長.15、【解析】
連接,根據(jù)勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.16、【解析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.17、1﹣1或﹣1【解析】
直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,直線y=kx+4與y=|x1-x-1|的圖象恰好有三個公共點,即-x1+x+1=kx+4有相等的實數(shù)解,利用根的判別式的意義可求出此時k的值,另外當y=kx+4過(1,0)時,也滿足條件.【詳解】解:當y=0時,x1-x-1=0,解得x1=-1,x1=1,
則拋物線y=x1-x-1與x軸的交點為(-1,0),(1,0),
把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,
則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),
當直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,
直線y=kx+4與函數(shù)y=|x1-x-1|的圖象恰好有三個公共點,
即-x1+x+1=kx+4有相等的實數(shù)解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1,
所以k的值為1+1或1-1.
當k=1+1時,經(jīng)檢驗,切點橫坐標為x=-<-1不符合題意,舍去.
當y=kx+4過(1,0)時,k=-1,也滿足條件,故答案為1-1或-1.【點睛】本題考查了二次函數(shù)與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點式即可求得翻折后的二次函數(shù)解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時的解析式。18、2【解析】
直接利用接近和的數(shù)據(jù)得出符合題意的答案.【詳解】解:到之間可以為:2(答案不唯一),故答案為:2(答案不唯一).【點睛】此題考查無理數(shù)的估算,解題的關鍵在于利用題中所給有理數(shù)的大小求符合題意的答案.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊選手成績比較穩(wěn)定.【解析】
分析:(1)根據(jù)成績表,結合平均數(shù)、眾數(shù)、中位數(shù)的計算方法進行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結合比較結果得出結論;(3)利用方差的計算公式,求出初中部的方差,結合方差的意義判斷哪個代表隊選手的成績較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊選手成績比較穩(wěn)定.【點睛】本題是一道有關條形統(tǒng)計圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計算方法是解題的關鍵.20、(1);(2)(,0)或【解析】
(1)把A點坐標代入直線解析式可求得n的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(x,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于x的方程,解方程可求得P點的坐標.【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標代入y=,得k=6,則雙曲線解析式為y=.(2)對于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標為或.21、(1)﹣10;(2)∠EFC=72°.【解析】
(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計算即可;(2)根據(jù)折疊的性質得到一對角相等,再由已知角的關系求出結果即可.【詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【點睛】本題考查了實數(shù)的性質及平行線的性質,解題的關鍵是熟練掌握實數(shù)的運算法則及平行線的性質.22、(1)﹣1;(2)x=﹣1是原方程的根.【解析】
(1)直接化簡二次根式進而利用零指數(shù)冪的性質以及特殊角三角函數(shù)值進而得出答案;(2)直接去分母再解方程得出答案.【詳解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,檢驗:當x=﹣1時,x﹣3≠0,故x=﹣1是原方程的根.【點睛】此題主要考查了實數(shù)運算和解分式方程,正確掌握解分式方程的方法是解題關鍵.23、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當P運動到點B時,O為AC(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設AP=x,則BP=4﹣x,由相似三角形的對應邊成比例求出AE的表達式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點共圓,∴點O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點共圓,∴∠OAP=∠OEP=45°,∴點O在AC上,當P運動到點B時,O為AC的中點,OA=12AC=2即點O經(jīng)過的路徑長為22(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵ME=MP,∴AN=PN,∴MN=12AE設AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【點睛】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關鍵.24、(1);y2=2250x;(2)甲、乙兩個商場的收費相同時,所買商品為6件;(3)所買商品為5件時,應選擇乙商場更優(yōu)惠.【解析】試題分析:(1)由兩家商場的優(yōu)惠方案分別列式整理即可;(2)由收費相同,列出方程求解即可;(3)由函數(shù)解析式分別求出x=5時的函數(shù)值,即可得解試題解析:(1)當x=1時,y1=3000;當x>1時,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)當甲、乙兩個商場的收費相同時,2100x+1=2250x,解得x=6,答:甲、乙兩個商場的收費相同時,所買商品為6件;(3)x=5時,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所買商品為5件時,應選擇乙商場更優(yōu)惠.考點:一次函數(shù)的應用25、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應用待定系數(shù)法求解析式;(1)設出點T坐標,表示△TAC三邊,進行分類討論;(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據(jù)以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設P(m,),則Q(m,),∵Q、R關于x=1對稱∴R(1﹣m,),①當點P在直線l左側時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)性質、三角形全等和等腰三角形判定,熟練掌握相關知識,應用數(shù)形結合和分類討論的數(shù)學思想進行解題是關鍵.26、(1)工人甲第12天生產的產品數(shù)量為70件;(2)第11天時,利潤最大,最大利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡明法語教程課件
- 單位管理制度展示大合集【員工管理篇】
- 艾羅能源(688717)新產品與新市場老牌戶儲企業(yè)打開第二成長曲線
- 單位管理制度收錄大合集人力資源管理十篇
- 單位管理制度品讀選集人員管理十篇
- 《口腔內科護理評估》課件
- 2022年內蒙古呼倫貝爾市牙克石市初中畢業(yè)生學業(yè)水平模擬測
- 2025年中國勞動防護手套市場深度調研分析及投資前景研究預測報告
- 2025年中國單烷基醚磷酸酯醚行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2020-2025年中國無芯卷筒紙行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 人教版道德與法治八年級上冊2.1網(wǎng)絡改變世界課件
- 外研版小學英語(三起點)六年級上冊期末測試題及答案(共3套)
- 工業(yè)互聯(lián)網(wǎng)平臺 安全生產數(shù)字化管理 第2部分:石化化工行業(yè) 編制說明
- 成人手術后疼痛評估與護理-中華護理學會團體標準2023 2
- DB15-T 3585-2024 高標準農田施工質量評定規(guī)程
- 天津濱海新區(qū)2025屆數(shù)學七年級第一學期期末學業(yè)質量監(jiān)測模擬試題含解析
- 2024年浙江省臺州市仙居縣中考二??茖W試卷
- 醫(yī)院護理培訓課件:《經(jīng)氣管插管、氣管切開處吸痰》
- 2024年大學計算機基礎考試題庫附參考答案(完整版)
- 租金評估技術報告范文模版
- Unit1+Food+for+thought+Understanding+ideas+A+child+of+two+cuisines語言點高中英語外研版必修第二冊
評論
0/150
提交評論