山東省棗莊市嶧城區(qū)底閣鎮(zhèn)2025屆數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第1頁
山東省棗莊市嶧城區(qū)底閣鎮(zhèn)2025屆數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第2頁
山東省棗莊市嶧城區(qū)底閣鎮(zhèn)2025屆數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第3頁
山東省棗莊市嶧城區(qū)底閣鎮(zhèn)2025屆數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第4頁
山東省棗莊市嶧城區(qū)底閣鎮(zhèn)2025屆數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省棗莊市嶧城區(qū)底閣鎮(zhèn)2025屆數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.從地面豎直向上拋出一小球,小球的高度(單位:)與小球運動時間(單位:)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小球在空中經(jīng)過的路程是;②小球拋出3秒后,速度越來越快;③小球拋出3秒時速度為0;④小球的高度時,.其中正確的是()A.①④ B.①② C.②③④ D.②③2.下列事件中,是必然事件的是()A.?dāng)S一枚質(zhì)地均勻的骰子,向上一面的點數(shù)為偶數(shù)B.三角形的內(nèi)角和等于180°C.不透明袋子中裝有除色外無其它差別的9個白球,1個黑球,從中摸出一球為白球D.拋擲一枚質(zhì)地均勻的硬幣2次,出現(xiàn)1次“正面向上”,1次“反面向上”3.如圖,點A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,則∠BOC等于()A.60° B.70° C.120° D.140°4.已知兩個相似三角形,其中一組對應(yīng)邊上的高分別是和,那么這兩個三角形的相似比為()A. B. C. D.5.若不等式組無解,則的取值范圍為()A. B. C. D.6.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(

)A. B. C. D.7.在Rt△ABC中,∠C=90°,若AC=4,AB=5,則cosB的值()A. B. C. D.8.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°9.如圖,在矩形中,,,過對角線交點作交于點,交于點,則的長是()A.1 B. C.2 D.10.已知一條拋物線的表達(dá)式為,則將該拋物線先向右平移個單位長度,再向上平移個單位長度,得到的新拋物線的表達(dá)式為()A. B. C. D.11.用一塊長40cm,寬28cm的矩形鐵皮,在四個角截去四個全等的正方形后,折成一個無蓋的長方形盒子,若折成的長方體的底面積為,設(shè)小正方形的邊長為xcm,則列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=36012.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c-m=0有兩個不相等的實數(shù)根,下列結(jié)論:①b2﹣4ac<0;②abc>0;③a-b+c>0;④m>-2,其中,正確的個數(shù)有A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,在矩形中,,點分別在矩形的各邊上,,則四邊形的周長是______________.14.從﹣2,﹣1,1,2四個數(shù)中任取兩數(shù),分別記為a、b,則關(guān)于x的不等式組有解的概率是_____.15.已知P是線段AB的黃金分割點,PA>PB,AB=2cm,則PA為___cm.16.代數(shù)式+2的最小值是_____.17.如圖,,直線a、b與、、分別相交于點A、B、C和點D、E、F.若AB=3,BC=5,DE=4,則EF的長為______.18.若某人沿坡度i=3∶4的斜坡前進(jìn)10m,則他比原來的位置升高了_________m.三、解答題(共78分)19.(8分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C,若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);(3)當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.20.(8分)如圖,在中,是內(nèi)心,,是邊上一點,以點為圓心,為半徑的經(jīng)過點,交于點.(1)求證:是的切線;(2)連接,若,,求圓心到的距離及的長.21.(8分)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.如圖1,在中,是的完美分割線,且,則的度數(shù)是如圖2,在中,為角平分線,,求證:為的完美分割線.如圖2,中,是的完美分割線,且是以為底邊的等腰三角形,求完美分割線的長.22.(10分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.(1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;(2)如圖2,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.23.(10分)(1)計算(2)解方程.24.(10分)學(xué)校決定每班選取名同學(xué)參加全國交通安全日細(xì)節(jié)關(guān)乎生命安全文明出行主題活動啟動儀式,班主任決定從名同學(xué)(小明、小山、小月、小玉)中通過抽簽的方式確定名同學(xué)去參加該活動.抽簽規(guī)則:將名同學(xué)的姓名分別寫在張完全相同的卡片正面,把張卡片的背面朝上,洗勻后放在桌子上,王老師先從中隨機(jī)抽取一張卡片,記下名字,再從剩余的張卡片中隨機(jī)抽取一張,記下名字.(1)小剛被抽中是___事件,小明被抽中是____事件(填不可能、必然、隨機(jī)),第一次抽取卡片抽中是小玉的概率是______;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小月被抽中的概率.25.(12分)關(guān)于x的方程的解為正數(shù),且關(guān)于y的不等式組有解,求符合題意的整數(shù)m.26.已知關(guān)于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=1.求證:對于任意實數(shù)t,方程都有實數(shù)根;

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)函數(shù)的圖象中的信息判斷即可.【詳解】①由圖象知小球在空中達(dá)到的最大高度是;故①錯誤;②小球拋出3秒后,速度越來越快;故②正確;③小球拋出3秒時達(dá)到最高點即速度為0;故③正確;④設(shè)函數(shù)解析式為:,把代入得,解得,∴函數(shù)解析式為,把代入解析式得,,解得:或,∴小球的高度時,或,故④錯誤;故選D.【點睛】本題考查了二次函數(shù)的應(yīng)用,解此題的關(guān)鍵是正確的理解題意2、B【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型.【詳解】解:A、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)為偶數(shù)是隨機(jī)事件;B、三角形的內(nèi)角和等于180°是必然事件;C、不透明袋子中裝有除色外無其它差別的9個白球,1個黑球,從中摸出一球為白球是隨機(jī)事件;D、拋擲一枚質(zhì)地均勻的硬幣2次,出現(xiàn)1次“正面向上”,1次“反面向上”是隨機(jī)事件;故選:B.【點睛】本題考查了必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、D【解析】試題分析:如圖,連接OA,則∵OA=OB=OC,∴∠BAO=∠ABO=32°,∠CAO=∠ACO=38°.∴∠CAB=∠CAO+∠BAO=1.∵∠CAB和∠BOC上同弧所對的圓周角和圓心角,∴∠BOC=2∠CAB=2.故選D.4、B【分析】根據(jù)相似三角形對應(yīng)高的比等于相似比,即可得出結(jié)論.【詳解】解:∵相似三角形對應(yīng)高的比等于相似比∴相似比=故選B【點睛】此題主要考查了相似三角形的性質(zhì),相似三角形對應(yīng)高的比等于相似比,熟記相關(guān)性質(zhì)是解題的關(guān)鍵.5、A【分析】求出第一個不等式的解集,根據(jù)口訣:大大小小無解了可得關(guān)于m的不等式,解之可得.【詳解】解不等式,得:x>8,∵不等式組無解,∴4m≤8,解得m≤2,故選A.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.6、D【解析】一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.7、B【分析】根據(jù)勾股定理計算出BC長,再根據(jù)余弦定義可得答案.【詳解】如圖所示:∵AC=4,AB=5,∴BC===3,∴cosB==.故選:B.【點睛】考查了銳角三角函數(shù),解題關(guān)鍵是掌握余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦,記作cosA.8、B【解析】只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的首先解決問題,屬于中考??碱}型.9、B【分析】連接,由矩形的性質(zhì)得出,,,,由線段垂直平分線的性質(zhì)得出,設(shè),則,在中,由勾股定理得出方程,解方程即可.【詳解】如圖:連接,∵四邊形是矩形,∴,,,,∵,∴,設(shè),則,在中,由勾股定理得:,解得:,即;故選B.【點睛】本題考查了矩形的性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.10、A【分析】可根據(jù)二次函數(shù)圖像左加右減,上加下減的平移規(guī)律進(jìn)行解答.【詳解】二次函數(shù)向右平移個單位長度得,,再向上平移個單位長度得即故選A.【點睛】本題考查了二次函數(shù)的平移,熟練掌握平移規(guī)律是解題的關(guān)鍵.11、B【分析】由題意設(shè)剪掉的正方形的邊長為xcm,根據(jù)長方體的底面積為列出方程即可.【詳解】解:設(shè)剪掉的正方形的邊長為xcm,則(28﹣2x)(40﹣2x)=1.故選:B.【點睛】本題考查一元二次方程的應(yīng)用,解答本題的關(guān)鍵是仔細(xì)審題并建立方程.12、C【詳解】解:如圖所示:圖象與x軸有兩個交點,則b2﹣4ac>0,故①錯誤;∵圖象開口向上,∴a>0,∵對稱軸在y軸右側(cè),∴a,b異號,∴b<0,∵圖象與y軸交于x軸下方,∴c<0,∴abc>0,故②正確;當(dāng)x=﹣1時,a﹣b+c>0,故③選項正確;∵二次函數(shù)y=ax2+bx+c的頂點坐標(biāo)縱坐標(biāo)為:﹣2,∴關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,則m>﹣2,故④正確.故選C.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.二、填空題(每題4分,共24分)13、【分析】根據(jù)矩形的對角線相等,利用勾股定理求出對角線的長度,然后根據(jù)平行線分線段成比例定理列式表示EF、EH的長度之和,再根據(jù)四邊形EFGH是平行四邊形,即可得解.【詳解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四邊形EFGH是平行四邊形,∴四邊形EFGH的周長=,故答案為:.【點睛】本題考查了平行線分線段成比例定理、矩形的對角線相等和勾股定理,根據(jù)平行線分線段成比例定理得出是解題的關(guān)鍵,也是本題的難點.14、.【分析】根據(jù)關(guān)于x的不等式組有解,得出b≤x≤a+1,根據(jù)題意列出樹狀圖得出所有等情況數(shù)和關(guān)于x的不等式組有解的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:∵關(guān)于x的不等式組有解,∴b≤x≤a+1,根據(jù)題意畫圖如下:共有12種等情況數(shù),其中關(guān)于x的不等式組有解的情況分別是,,,,,,,,共8種,則有解的概率是;故答案為:.【點睛】本題考查了不等式組的解和用列舉法求概率,熟練掌握并靈活運用是解題的關(guān)鍵.15、【分析】把一條線段分割為兩部分,使較大部分與全長的比值等于較小部分與較大的比值,則這個比值即為黃金分割,其比值是【詳解】∵P為線段AB的黃金分割點,且PA>PB,AB=2cm,∴故答案為.【點睛】分析題意可知,本題主要考查了黃金分割,弄清楚黃金分割的定義是解答此題的關(guān)鍵;16、1【分析】由二次函數(shù)的非負(fù)性得a-1≥0,解得a≥1,根據(jù)被開方數(shù)越小,算術(shù)平方根的值越小,可得+1≥1,所以代數(shù)式的最小值為1.【詳解】解:∵≥0,∴+1≥1,即的最小值是1.故答案為:1.【點睛】本題是一道求二次根式之和的最小值的題目,解答本題的關(guān)鍵是掌握二次根式的性質(zhì).17、【分析】直接根據(jù)平行線分線段成比例定理即可得.【詳解】,,,,解得,故答案為:.【點睛】本題考查了平行線分線段成比例定理,熟記平行線分線段成比例定理是解題關(guān)鍵.18、1.【詳解】解:如圖:由題意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案為:1【點睛】本題考查解直角三角形的應(yīng)用-坡度坡角問題.三、解答題(共78分)19、(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點P的坐標(biāo)為(,)時,四邊形ACPB的最大面積值為【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點坐標(biāo);(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標(biāo),當(dāng)時,即解得(不合題意,舍),∴點P的坐標(biāo)為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點Q的坐標(biāo)為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當(dāng)m=時,四邊形ABPC的面積最大.當(dāng)m=時,,即P點的坐標(biāo)為當(dāng)點P的坐標(biāo)為時,四邊形ACPB的最大面積值為.【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點的縱坐標(biāo),又利用了自變量與函數(shù)值的對應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).20、(1)見解析;(2)點到的距離是1,的長度【分析】(1)連接OI,延長AI交BC于點D,根據(jù)內(nèi)心的概念及圓的性質(zhì)可證明OI∥BD,再根據(jù)等腰三角形的性質(zhì)及平行線的性質(zhì)可證明∠AIO=90°,從而得到結(jié)論;(2)過點O作OE⊥BI,利用垂徑定理可得到OE平分BI,再根據(jù)圓的性質(zhì)及中位線的性質(zhì)即可求出O到BI的距離;根據(jù)角平分線及圓周角定理可求出∠FOI=60°,從而證明△FOI為等邊三角形,最后利用弧長公式進(jìn)行計算即可.【詳解】解:(1)證明:延長AI交BC于D,連接OI,∵I是△ABC的內(nèi)心,∴BI平分∠ABC,AI平分∠BAC,∴∠1=∠3,又∵OB=OI,∴∠3=∠2,∴∠1=∠2,∴OI∥BD,又∵AB=AC,∴AD⊥BC,即∠ADB=90°,∴∠AIO=∠ADB=90°,∴AI為的切線;(2)作OE⊥BI,由垂徑定理可知,OE平分BI,又∵OB=OF,∴OE是△FBI的中位線,∵IF=2,∴OE=IF==1,∴點O到BI的距離是1,∵∠IBC=30°,由(1)知∠ABI=∠IBC,∴∠ABI=30°,∴∠FOI=60°,又∵OF=OI,∴△FOI是等邊三角形,∴OF=OI=FI=2,∴的長度.【點睛】本題考查圓與三角形的綜合,重點在于熟記圓的相關(guān)性質(zhì)及定理,以及等腰三角形、等邊三角形的性質(zhì)與判定定理,注意圓中連接形成半徑是常作的輔助線,等腰三角形中常利用“三線合一”構(gòu)造輔助線.21、(1)88°;(2)詳見解析;(3)【分析】(1)是的完美分割線,且,得∠ACD=44°,∠BCD=44°,進(jìn)而即可求解;(2)由,得,由平分,,得為等腰三角形,結(jié)合,即可得到結(jié)論;(3)由是的完美分割線,得從而得,設(shè),列出方程,求出x的值,再根據(jù),即可得到答.【詳解】(1)∵是的完美分割線,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,為等腰三角形.,,,是的完美分割線.∵是以為底邊的等腰三角形,∴,∵是的完美分割線,∴,設(shè),則,,,.【點睛】本題主要考查等腰三角形的性質(zhì)與相似三角形的判定和性質(zhì)定理,掌握相似三角形的性質(zhì)定理,是解題的關(guān)鍵.22、(1)見解析;(2)【分析】(1)根據(jù)所給的相似對角線的證明方法證明即可;(2)由題可證的,得到,過點E作,可得出EQ,根據(jù)即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對角線”.(2)∵是四邊形EFGH的“相似對角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過點E作,垂足為.則.∵,∴,∴,∴,∴.【點睛】本題主要考查了四邊形綜合知識點,涉及了相似三角形,解直角三角形等知識,準(zhǔn)確分析并能靈活運用相關(guān)知識是解題的關(guān)鍵.23、(1)-6;(2)【分析】(1)首先分別利用負(fù)指數(shù)冪、二次根式的化簡、特殊角的三角函數(shù)值、絕對值的性質(zhì)進(jìn)行計算,然后計算加減法即可;

(2)直接分解因式即可解方程.【詳解】(1)解:原式(2)解:或【點睛】本題分別考查了實數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論