2024屆山東省青島超銀中學中考二模數(shù)學試題含解析_第1頁
2024屆山東省青島超銀中學中考二模數(shù)學試題含解析_第2頁
2024屆山東省青島超銀中學中考二模數(shù)學試題含解析_第3頁
2024屆山東省青島超銀中學中考二模數(shù)學試題含解析_第4頁
2024屆山東省青島超銀中學中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省青島超銀中學中考二模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為()A. B.2 C. D.22.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.33.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.4.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°5.若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)的取值范圍是()A. B. C. D.6.在,,0,1這四個數(shù)中,最小的數(shù)是A. B. C.0 D.17.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.128.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚9.如圖,點E在△DBC的邊DB上,點A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④10.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,二、填空題(共7小題,每小題3分,滿分21分)11.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是_____.12.有四張質(zhì)地、大小、反面完全相同的不透明卡片,正面分別寫著數(shù)字1,2,3,4,現(xiàn)把它們的正面向下,隨機擺放在桌面上,從中任意抽出一張,則抽出的數(shù)字是奇數(shù)的概率是.13.在平面直角坐標系xOy中,位于第一象限內(nèi)的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.14.已知二次函數(shù)的圖象如圖所示,若方程有兩個不相等的實數(shù)根,則的取值范圍是_____________.15.釣魚島是中國的固有領(lǐng)土,位于中國東海,面積約4400000平方米,數(shù)據(jù)4400000用科學記數(shù)法表示為______.16.若-2amb4與5a2bn+7是同類項,則m+n=.17.拋物線的頂點坐標是________.三、解答題(共7小題,滿分69分)18.(10分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.19.(5分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.20.(8分)計算:12+(13)﹣2﹣|1﹣3|﹣(π+1)021.(10分)【發(fā)現(xiàn)證明】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.22.(10分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內(nèi)一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.23.(12分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.24.(14分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應(yīng)用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關(guān)系.2、D【解析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關(guān)鍵.3、A【解析】

根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關(guān)鍵.4、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補,并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補.5、D【解析】

根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關(guān)鍵是熟練運用分式有意義的條件,本題屬于基礎(chǔ)題型.6、A【解析】【分析】根據(jù)正數(shù)大于零,零大于負數(shù),正數(shù)大于一切負數(shù),即可得答案.【詳解】由正數(shù)大于零,零大于負數(shù),得,最小的數(shù)是,故選A.【點睛】本題考查了有理數(shù)比較大小,利用好“正數(shù)大于零,零大于負數(shù),兩個負數(shù)絕對值大的反而小”是解題關(guān)鍵.7、D【解析】

根據(jù)正方形的性質(zhì)可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結(jié)合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì),利用相似三角形的性質(zhì)求出AF的長度是解題的關(guān)鍵.8、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.9、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.10、D【解析】

先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:直接利用中心對稱圖形的性質(zhì)結(jié)合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對稱圖形,∴從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是:.故答案為.點睛:此題主要考查了中心對稱圖形的性質(zhì)和概率求法,正確把握中心對稱圖形的定義是解題關(guān)鍵.12、【解析】試題分析:這四個數(shù)中,奇數(shù)為1和3,則P(抽出的數(shù)字是奇數(shù))=2÷4=.考點:概率的計算.13、.【解析】

依據(jù)點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關(guān)的線段長,是解決這類問題的基本方法和規(guī)律.14、【解析】分析:先移項,整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點坐標為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個不相等的實數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點睛:本題主要考查了拋物線與x軸的交點問題,以及數(shù)形結(jié)合法;二次函數(shù)中當b2-4ac>0時,二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點.15、

【解析】試題分析:將4400000用科學記數(shù)法表示為:4.4×1.故答案為4.4×1.考點:科學記數(shù)法—表示較大的數(shù).16、-1.【解析】試題分析:根據(jù)同類項是字母相同且相同字母的指數(shù)也相同,可得方程組,根據(jù)解方程組,可得m、n的值,根據(jù)有理數(shù)的加法,可得答案.試題解析:由-2amb4與5a2bn+7是同類項,得m=2n+7=4解得m=2n=-3∴m+n=-1.考點:同類項.17、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點坐標是(0,-1),故答案為(0,-1).三、解答題(共7小題,滿分69分)18、(1)A種樹每棵2元,B種樹每棵80元;(2)當購買A種樹木1棵,B種樹木25棵時,所需費用最少,最少為8550元.【解析】

(1)設(shè)A種樹每棵x元,B種樹每棵y元,根據(jù)“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設(shè)購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據(jù)“購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍”列出不等式并求得x的取值范圍,結(jié)合實際付款總金額=0.9(A種樹的金額+B種樹的金額)進行解答.【詳解】解:(1)設(shè)A種樹木每棵x元,B種樹木每棵y元,根據(jù)題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設(shè)購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設(shè)實際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當x=1時,y最小為18×1+73=8550(元).答:當購買A種樹木1棵,B種樹木25棵時,所需費用最少,為8550元.19、見解析.【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點:全等三角形的判定;等腰直角三角形.20、3【解析】

先算負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式的化簡、絕對值,再相加即可求解;【詳解】解:原式=23=23=【點睛】考查實數(shù)的混合運算,分別掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式的化簡、絕對值的計算法則是解題的關(guān)鍵.21、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點A順時針旋轉(zhuǎn)90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點睛”本題考查了全等三角形的性質(zhì)和判定,勾股定理,正方形的性質(zhì)的應(yīng)用,正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.22、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側(cè)時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側(cè)時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當PF與⊙B相切時交y軸于F,∴PA切⊙B于A,∴點F就是直線y=kx+3k與⊙B的切點,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,當直線y=kx+3k與⊙A相切時交y軸于G切點為E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直線y=kx+3k上至少存在一個線段AB的“等長點”,∴﹣≤k≤,【點睛】此題是一次函數(shù)綜合題,主要考查了新定義,銳角三角函數(shù),直角三角形的性質(zhì),等腰三角形的性質(zhì),對稱性,解(1)的關(guān)鍵是理解新定義,解(2)的關(guān)鍵是畫出圖形,解(3)的關(guān)鍵是判斷出直線和圓A,B相切時是分界點.23、【解析】分析:化簡絕對值、0次冪和負指數(shù)冪,代入30°角的三角函數(shù)值,然后按照有理數(shù)的運算順序和法則進行計算即可.詳解:原

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論