版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省石家莊市二十八中學2025屆數(shù)學九上期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如果將拋物線向右平移1個單位,那么所得新拋物線的頂點坐標是()A. B. C. D.2.如圖,在平面直角坐標系中,將繞著旋轉中心順時針旋轉,得到,則旋轉中心的坐標為()A. B.C. D.3.下列計算正確的是()A. B. C.÷ D.4.若反比例函數(shù)y=圖象經(jīng)過點(5,-1),該函數(shù)圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.已知一元二次方程,則該方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.兩個根都是自然數(shù) D.無實數(shù)根6.已知的半徑為,點的坐標為,點的坐標為,則點與的位置關系是()A.點在外 B.點在上 C.點在內(nèi) D.不能確定7.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A.18 B.16 C.18.若將一個正方形的各邊長擴大為原來的4倍,則這個正方形的面積擴大為原來的()A.16倍 B.8倍 C.4倍 D.2倍9.如圖,在四邊形中,,對角線、交于點有以下四個結論其中始終正確的有()①;②;③;④A.1個 B.2個 C.3個 D.4個10.已知,則的值是()A. B. C. D.二、填空題(每小題3分,共24分)11.觀察下列各數(shù):,,,,,……按此規(guī)律寫出的第個數(shù)是______,第個數(shù)是______.12.如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點,與雙曲線y=交于E,F(xiàn)兩點,若AB=2EF,則k的值是_____.13.如圖,∠XOY=45°,一把直角三角尺△ABC的兩個頂點A、B分別在OX,OY上移動,其中AB=10,那么點O到頂點A的距離的最大值為_____.14.拋物線與軸交點坐標為______.15.如圖,⊙O與矩形ABCD的邊AB、CD分別相交于點E、F、G、H,若AE+CH=6,則BG+DF為_________.16.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.17.現(xiàn)有5張正面分別標有數(shù)字0,1,2,3,4的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,則使得關于的一元二次方程有實數(shù)根,且關于的分式方程有整數(shù)解的概率為.18.為解決群眾看病難的問題,一種藥品連續(xù)兩次降價,每盒價格由原來的60元降至48.6元.若平均每次降價的百分率是x,則關于x的方程是________
.三、解答題(共66分)19.(10分)如圖,在?ABCD中,AB=4,BC=8,∠ABC=60°.點P是邊BC上一動點,作△PAB的外接圓⊙O交BD于E.(1)如圖1,當PB=3時,求PA的長以及⊙O的半徑;(2)如圖2,當∠APB=2∠PBE時,求證:AE平分∠PAD;(3)當AE與△ABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.20.(6分)如圖,在中,點、、分別在邊、、上,,,.(1)當時,求的長;(2)設,,那么__________,__________(用向量,表示)21.(6分)如圖,已知,點、坐標分別為、.(1)把繞原點順時針旋轉得,畫出旋轉后的;(2)在(1)的條件下,求點旋轉到點經(jīng)過的路徑的長.22.(8分)某苗圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn),每盆植人3株時,平均每株盈利3元.在同樣的栽培條件下,若每盆增加1株,平均每株盈利就減少0.5元,要使每盆的盈利為10元,且每盆植入株數(shù)盡可能少,每盆應植入多少株?23.(8分)在平面直角坐標系中,已知拋物線.(1)求拋物線的對稱軸;(2)當時,設拋物線與軸交于兩點(點在點左側),頂點為,若為等邊三角形,求的值;(3)過(其中)且垂直軸的直線與拋物線交于兩點.若對于滿足條件的任意值,線段的長都不小于1,結合函數(shù)圖象,直接寫出的取值范圍.24.(8分)在平面直角坐標系中,已知,.(1)如圖1,求的值.(2)把繞著點順時針旋轉,點、旋轉后對應的點分別為、.①當恰好落在的延長線上時,如圖2,求出點、的坐標.②若點是的中點,點是線段上的動點,如圖3,在旋轉過程中,請直接寫出線段長的取值范圍.25.(10分)如圖,△ABC中,AC=BC,CD⊥AB于點D,四邊形DBCE是平行四邊形.求證:四邊形ADCE是矩形.26.(10分)如圖,已知,以為直徑作半圓,半徑繞點順時針旋轉得到,點的對應點為,當點與點重合時停止.連接并延長到點,使得,過點作于點,連接,.(1)______;(2)如圖,當點與點重合時,判斷的形狀,并說明理由;(3)如圖,當時,求的長;(4)如圖,若點是線段上一點,連接,當與半圓相切時,直接寫出直線與的位置關系.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)拋物線的平移規(guī)律得出平移后的拋物線的解析式,即可得出答案.【詳解】解:由將拋物線y=3x2+2向右平移1個單位,得
y=3(x-1)2+2,
頂點坐標為(1,2),
故選:C.【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用平移規(guī)律:左加右減,上加下減是解題關鍵.2、C【分析】根據(jù)旋轉的性質(zhì):對應點到旋轉中心的距離相等,可知旋轉中心一定在任何一對對應點所連線段的垂直平分線上,由圖形可知,線段OC與BE的垂直平分線的交點即為所求.【詳解】∵繞旋轉中心順時針旋轉90°后得到,∴O、B的對應點分別是C、E,又∵線段OC的垂直平分線為y=1,線段BE是邊長為2的正方形的對角線,其垂直平分線是另一條對角線所在的直線,由圖形可知,線段OC與BE的垂直平分線的交點為(1,1).故選C.【點睛】本題考查了旋轉的性質(zhì)及垂直平分線的判定.3、C【分析】根據(jù)二次根式的加減法對A、B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)完全平方公式對D進行判斷.【詳解】A、原式=2﹣,所以A選項錯誤;B、3與不能合并,所以B選項錯誤;C、原式==2,所以C選項正確;D、原式=3+4+4=7+4,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.4、D【解析】∵反比例函數(shù)y=的圖象經(jīng)過點(5,-1),
∴k=5×(-1)=-5<0,
∴該函數(shù)圖象在第二、四象限.
故選D.5、A【詳解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有兩個不相等的實數(shù)根.故選A.【點睛】本題考查根的判別式,熟記公式正確計算是解題關鍵,難度不大.6、B【分析】根據(jù)題意先由勾股定理求得點P到圓心O的距離,再根據(jù)點與圓心的距離與半徑的大小關系,來判斷出點P與⊙O的位置關系.【詳解】解:∵點P的坐標為(3,4),點的坐標為,∴由勾股定理得,點P到圓心O的距離=,∴點P在⊙O上.故選:B.【點睛】本題考查點與圓的位置關系,根據(jù)題意求出點到圓心的距離是解決本題的關鍵.7、B【分析】根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是16故選B.考點:簡單概率計算.8、A【分析】根據(jù)正方形的面積公式:s=a2,和積的變化規(guī)律,積擴大的倍數(shù)等于因數(shù)擴大倍數(shù)的乘積,由此解答.【詳解】解:根據(jù)正方形面積的計算方法和積的變化規(guī)律,如果一個正方形的邊長擴大為原來的4倍,那么正方形的面積是原來正方形面積的4×4=16倍.故選A.【點睛】此題考查相似圖形問題,解答此題主要根據(jù)正方形的面積的計算方法和積的變化規(guī)律解決問題.9、C【分析】根據(jù)相似三角形的判定定理、三角形的面積公式判斷即可.【詳解】解:∵AB∥CD,∴△AOB∽△COD,①正確;∵∠ADO不一定等于∠BCO,∴△AOD與△ACB不一定相似,②錯誤;∴,③正確;∵△ABD與△ABC等高同底,∴,∵,∴,④正確;故選C.【點睛】本題主要考查了相似三角形的判定與性質(zhì),掌握相似三角形的判定與性質(zhì)是解題的關鍵.10、A【解析】先把二次根式化簡變形,然后把a、b的值代入計算,即可求出答案.【詳解】解:∵,∴===;故選:A.【點睛】本題考查了二次根式的化簡求值,解題的關鍵是熟練掌握完全平方公式和平方差公式進行化簡.二、填空題(每小題3分,共24分)11、【分析】由題意可知已知數(shù)的每一項,都等于它的序列號的平方減,進而進行分析即可求解.【詳解】解:給出的數(shù):,,,,,……序列號:,,,,,……容易發(fā)現(xiàn),已知數(shù)的每一項,都等于它的序列號的平方減.因此,第個數(shù)是,第個數(shù)是.故第個數(shù)是,第個數(shù)是.故答案為:,.【點睛】本題考查探索規(guī)律的問題,解決此類問題要從數(shù)字中間找出一般規(guī)律(符號或數(shù)),進一步去運用規(guī)律進行解答.12、.【分析】作FH⊥x軸,EC⊥y軸,F(xiàn)H與EC交于D,先利用一次函數(shù)圖像上的點的坐標特征得到A點(2,0),B點(0,2),易得△AOB為等腰直角三角形,則AB=2,所以,EF=AB=,且△DEF為等腰直角三角形,則FD=DE=EF=1,設F點坐標是:(t,﹣t+2),E點坐標為(t+1,﹣t+1),根據(jù)反比例函數(shù)圖象上的點的坐標特征得到t(﹣t+2)=(t+1)?(﹣t+1),解得t=,則E點坐標為(,),繼而可求得k的值.【詳解】如圖,作FH⊥x軸,EC⊥y軸,F(xiàn)H與EC交于D,由直線y=﹣x+2可知A點坐標為(2,0),B點坐標為(0,2),OA=OB=2,∴△AOB為等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF為等腰直角三角形,∴FD=DE=EF=1,設F點橫坐標為t,代入y=﹣x+2,則縱坐標是﹣t+2,則F的坐標是:(t,﹣t+2),E點坐標為(t+1,﹣t+1),∴t(﹣t+2)=(t+1)?(﹣t+1),解得t=,∴E點坐標為(,),∴k=×=.故答案為.【點睛】本題考查反比例函數(shù)圖象上的點的坐標特征,解題的關鍵是掌握反比例函數(shù)(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.13、10【分析】當∠ABO=90°時,點O到頂點A的距離的最大,則△ABC是等腰直角三角形,據(jù)此即可求解.【詳解】解:∵∴當∠ABO=90°時,點O到頂點A的距離最大.
則OA=AB=10.
故答案是:10.【點睛】本題主要考查了等腰直角三角形的性質(zhì),正確確定點O到頂點A的距離的最大的條件是解題關鍵.14、【分析】令x=0,求出y的值即可.【詳解】解:∵當x=0,則y=-1+3=2,∴拋物線與y軸的交點坐標為(0,2).【點睛】本題考查的是二次函數(shù)的性質(zhì),熟知y軸上點的特點,即y軸上的點的橫坐標為0是解答此題的關鍵.15、6【分析】作EM⊥BC,HN⊥AD,易證得,繼而證得,利用等量代換即可求得答案.【詳解】過E作EM⊥BC于M,過H作HN⊥AD于N,如圖,∵四邊形ABCD為矩形,∴AD∥BC,∴,∴,∵四邊形ABCD為矩形,且EM⊥BC,HN⊥AD,∴四邊形ABME、EMHN、NHCD均為矩形,∴,AE=BM,EN=MH,ND=HC,在和中,∴(HL),∴,∴,故答案為:【點睛】本題考查了矩形的判定和性質(zhì)、直角三角形的判定和性質(zhì)、平行弦所夾的弧相等、等弧對等弦等知識,靈活運用等量代換是解題的關鍵.16、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.17、【詳解】首先根據(jù)一元二次方程有實數(shù)解可得:4-4(a-2)≥0可得:a≤3,則符合條件的a有0,1,2,3四個;解分式方程可得:x=,∵x≠2,則a≠1,a≠2,綜上所述,則滿足條件的a為0和3,則P=.考點:(1)、概率;(2)、分式方程的解.18、10(1﹣x)2=48.1.【解析】試題分析:本題可先列出第一次降價后藥品每盒價格的代數(shù)式,再根據(jù)第一次的價格列出第二次降價的售價的代數(shù)式,然后令它等于48.1即可列出方程.解:第一次降價后每盒價格為10(1﹣x),則第二次降價后每盒價格為10(1﹣x)(1﹣x)=10(1﹣x)2=48.1,即10(1﹣x)2=48.1.故答案為10(1﹣x)2=48.1.考點:由實際問題抽象出一元二次方程.三、解答題(共66分)19、(1)PA的長為,⊙O的半徑為;(2)見解析;(3)⊙O的半徑為2或或【分析】(1)過點A作BP的垂線,作直徑AM,先在Rt△ABH中求出BH,AH的長,再在Rt△AHP中用勾股定理求出AP的長,在Rt△AMP中通過銳角三角函數(shù)求出直徑AM的長,即求出半徑的值;(2)證∠APB=∠PAD=2∠PAE,即可推出結論;(3)分三種情況:當AE⊥BD時,AB是⊙O的直徑,可直接求出半徑;當AE⊥AD時,連接OB,OE,延長AE交BC于F,通過證△BFE∽△DAE,求出BE的長,再證△OBE是等邊三角形,即得到半徑的值;當AE⊥AB時,過點D作BC的垂線,通過證△BPE∽△BND,求出PE,AE的長,再利用勾股定理求出直徑BE的長,即可得到半徑的值.【詳解】(1)如圖1,過點A作BP的垂線,垂足為H,作直徑AM,連接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB?sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直徑,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半徑為,即PA的長為,⊙O的半徑為;(2)當∠APB=2∠PBE時,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四邊形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如圖3﹣1,當AE⊥BD時,∠AEB=90°,∴AB是⊙O的直徑,∴r=AB=2;②如圖3﹣2,當AE⊥AD時,連接OB,OE,延長AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB?sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等邊三角形,∴r=;③當AE⊥AB時,∠BAE=90°,∴AE為⊙O的直徑,∴∠BPE=90°,如圖3﹣3,過點D作BC的垂線,交BC的延長線于點N,延開PE交AD于點Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC?sin60°=2,CN=CD=2,∴PQ=DN=2,設QE=x,則PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE與Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半徑為2或或.【點睛】此題主要考查圓與幾何綜合,解題的關鍵是熟知圓的基本性質(zhì)、勾股定理及相似三角形的判定與性質(zhì).20、(1);(2),【分析】(1)利用平行線分線段成比例定理求解即可.
(2)利用三角形法則求解即可.【詳解】(1)∵DE∥BC,EF∥AB,
∴四邊形DEFB是平行四邊形,
∴DE=BF=5,
∵AD:AB=DE:BC=1:3,
∴BC=15,
∴CF=BC-BF=15-5=1.
(2)∵AD:AB=1:3,
∴,
∵EF=BD,EF∥BD,
∴,
∵CF=2DE,
∴,
∴.【點睛】此題考查平面向量,平行向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)答案見解析;(2).【分析】(1)根據(jù)題意畫出圖形即可;(2)求出OA的長,再根據(jù)弧長公式即可得出結論.【詳解】(1)如圖所示,(2)由(1)圖可得,,∴【點睛】本題考查的是作圖-旋轉變換,熟知圖形旋轉不變性的性質(zhì)是解答此題的關鍵.22、4株【分析】根據(jù)已知假設每盆花苗增加株,則每盆花苗有株,得出平均單株盈利為元,由題意得求出即可?!驹斀狻拷猓涸O每盆花苗增加株,則每盆花苗有株,平均單株盈利為:元,由題意得:.化簡,整理,.解這個方程,得,,則,,每盆植入株數(shù)盡可能少,盆應植4株.答:每盆應植4株.【點睛】此題考查了一元二次方程的應用,根據(jù)每盆花苗株數(shù)平均單株盈利總盈利得出方程是解題關鍵.23、(1)x=2;(2);(3)或.【解析】(1)利用配方法將二次函數(shù)解析式變形為頂點式,由此即可得出拋物線的對稱軸;(2)利用二次函數(shù)圖象上點的坐標特征可得出點A,B的坐標,由(1)可得出頂點C的坐標,再利用等邊三角形的性質(zhì)可得出關于a的一元一次方程,解之即可得出a值;(3)分及兩種情況考慮:①當時,利用二次函數(shù)圖象上點的坐標特征可得出關于a的一元一次不等式,解之即可得出a的取值范圍;②當時,利用二次函數(shù)圖象上點的坐標特征可得出關于a的一元一次不等式,解之即可得出a的取值范圍.綜上,此題得解.【詳解】(1)∵,∴拋物線的對稱軸為直線.(2)依照題意,畫出圖形,如圖1所示.當時,,即,解得:,.由(1)可知,頂點的坐標為.∵,∴.∵為等邊三角形,∴點的坐標為,∴,∴.(3)分兩種情況考慮,如圖2所示:①當時,,解得:;②當時,,解得:.【點睛】本題考查了二次函數(shù)的三種形式、二次函數(shù)圖象上點的坐標特征、等邊三角形的性質(zhì)以及解一元一次不等式.24、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根據(jù)正弦的定義即可求解;(2)作MC⊥OB,先求出直線AB解析式,根據(jù)等腰三角形的性質(zhì)及三角函數(shù)的定義求出M點坐標,根據(jù)MN∥OB,求出N點坐標;(3)由于點C是定點,點P隨△ABO旋轉時的運動軌跡是以B為圓心,BP長為半徑的圓,故根據(jù)點和圓的位置關系可知,當點P在線段OB上時,CP=BP-BC最短;當點P在線段OB延長線上時,CP=BP+BC最長.又因為BP的長因點D運動而改變,可先求BP長度的范圍.由垂線段最短可知,當BP垂直MN時,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以點P與M重合時,BP=BM最長,代入CP=BP+BC求CP的最大值.【詳解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直線AB的解析式為:y=∵旋轉,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M點的縱坐標為,代入直線AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,則+5=∴(3)連接BP∵點D為線段OA上的動點,OA的對應邊為MN∴點P為線段MN上的動
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度會展中心場地租賃及配套服務補充協(xié)議3篇
- 2025年個人承包文化創(chuàng)意產(chǎn)業(yè)合同(創(chuàng)意設計)2篇
- 2024版支付擔保合同范本
- 2024生物質(zhì)鍋爐燃料供應及銷售合同3篇
- 2024石膏板供應商戰(zhàn)略合作采購合同模板3篇
- 2025年度專業(yè)廚師團隊廚房服務承包協(xié)議3篇
- 2024綠化土地租賃與生態(tài)補償及綠化管理合同3篇
- 2024鐵路貨運車輛安全檢測及維護服務合同實施細則3篇
- 多媒體應用基礎知到智慧樹章節(jié)測試課后答案2024年秋安徽大學
- 2025年充電樁充電站運營維護及升級改造合同3篇
- 汽車租賃流程圖
- 兒童糖尿病的飲食
- “以案促改”心得體會
- 干細胞項目商業(yè)計劃書
- 安全事故現(xiàn)場處置方案(3篇)
- 中國通 用技術集團招聘筆試題庫
- 【MOOC】工程材料學-華中科技大學 中國大學慕課MOOC答案
- 就業(yè)招聘服務行業(yè)市場前瞻與未來投資戰(zhàn)略分析報告
- 收購居間服務合同
- 無人機航拍技術教案(完整版)
- 手繪pop教學課件
評論
0/150
提交評論