吉林省長(zhǎng)春汽車(chē)經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)六中2022年數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
吉林省長(zhǎng)春汽車(chē)經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)六中2022年數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
吉林省長(zhǎng)春汽車(chē)經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)六中2022年數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
吉林省長(zhǎng)春汽車(chē)經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)六中2022年數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
吉林省長(zhǎng)春汽車(chē)經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)六中2022年數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.2.已知復(fù)數(shù),則()A. B. C. D.3.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢(qián)數(shù)多于其他任何人)的概率是()A. B. C. D.4.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.5.在天文學(xué)中,天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿(mǎn)足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽(yáng)的星等是–26.7,天狼星的星等是–1.45,則太陽(yáng)與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.16.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2827.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.38.五行學(xué)說(shuō)是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬(wàn)物皆由金、木、水、火、土五類(lèi)元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類(lèi)元素中任選2類(lèi)元素,則2類(lèi)元素相生的概率為()A. B. C. D.9.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.3210.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.211.某校在高一年級(jí)進(jìn)行了數(shù)學(xué)競(jìng)賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競(jìng)賽成績(jī):555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競(jìng)賽成績(jī),運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.1212.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_________.14.已知正方體ABCD-A1B1C1D1棱長(zhǎng)為2,點(diǎn)P是上底面15.變量滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最大值是____.16.在中,內(nèi)角的對(duì)邊長(zhǎng)分別為,已知,且,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿(mǎn)足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:對(duì)于任意的n∈N*,都有Tn<.18.(12分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.19.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個(gè)數(shù).20.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:21.(12分)已知數(shù)列滿(mǎn)足,,數(shù)列滿(mǎn)足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且.(1)解關(guān)于的不等式;(2)如果對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)?,所以,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.2、B【解析】

利用復(fù)數(shù)除法、加法運(yùn)算,化簡(jiǎn)求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.3、B【解析】

將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.4、A【解析】

因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對(duì)數(shù)恒等式和對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.5、A【解析】

由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】?jī)深w星的星等與亮度滿(mǎn)足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問(wèn)題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.6、B【解析】

將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀(guān)圖如圖所示,延長(zhǎng)交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題7、C【解析】

結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對(duì)于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對(duì)于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對(duì)于命題③,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.8、A【解析】

列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類(lèi)元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類(lèi),共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類(lèi)元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類(lèi)元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.9、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.10、B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.11、D【解析】

根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績(jī)大于等于90的人數(shù),的取值為成績(jī)大于等于60且小于90的人數(shù),故,,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識(shí).12、A【解析】

將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A【點(diǎn)睛】本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、31【解析】

由二項(xiàng)式定理及其展開(kāi)式得通項(xiàng)公式得:因?yàn)榈恼归_(kāi)式得通項(xiàng)為,則的展開(kāi)式中的常數(shù)項(xiàng)為:,得解.【詳解】解:,則的展開(kāi)式中的常數(shù)項(xiàng)為:.故答案為:31.【點(diǎn)睛】本題考查二項(xiàng)式定理及其展開(kāi)式的通項(xiàng)公式,求某項(xiàng)的導(dǎo)數(shù),考查計(jì)算能力.14、π.【解析】

設(shè)三棱錐P-ABC的外接球?yàn)榍騉',分別取AC、A1C1的中點(diǎn)O、O1,先確定球心O'在線(xiàn)段AC和A1C1中點(diǎn)的連線(xiàn)上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球?yàn)榍騉'分別取AC、A1C1的中點(diǎn)O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點(diǎn)P在上底面A1B1由于O'P=R=41因此,點(diǎn)P所構(gòu)成的圖形的面積為π×O【點(diǎn)睛】本題考查三棱錐的外接球的相關(guān)問(wèn)題,根據(jù)立體幾何中的線(xiàn)段關(guān)系求動(dòng)點(diǎn)的軌跡,屬于中檔題.15、5【解析】

分析:畫(huà)出可行域,平移直線(xiàn),當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),可得有最大值.詳解:畫(huà)出束條件表示的可行性,如圖,由可得,可得,目標(biāo)函數(shù)變形為,平移直線(xiàn),當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),可得有最大值,故答案為.點(diǎn)睛:本題主要考查線(xiàn)性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的定點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.16、4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為4三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析【解析】

(1)因?yàn)閿?shù)列的前項(xiàng)和滿(mǎn)足:,所以當(dāng)時(shí),,即解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,因?yàn)?,所以,解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,當(dāng)時(shí),有,所以,解得,當(dāng)時(shí),,符合所以數(shù)列的通項(xiàng)公式,;(2)因?yàn)椋?,所以?shù)列的前項(xiàng)和為:,當(dāng)時(shí),有,所以,所以對(duì)于任意,數(shù)列的前項(xiàng)和.18、(1)1;(2)證明見(jiàn)解析.【解析】

(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得的最大值,進(jìn)而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時(shí),取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,令,則在上單調(diào)遞減當(dāng)時(shí),.【點(diǎn)睛】本小題主要考查含有絕對(duì)值的函數(shù)的最值的求法,考查利用基本不等式進(jìn)行證明,屬于中檔題.19、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)求導(dǎo)后分析導(dǎo)函數(shù)的正負(fù)再判斷單調(diào)性即可.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,再換元將原方程轉(zhuǎn)化為,再求導(dǎo)分析的圖像數(shù)形結(jié)合求解即可.【詳解】(1)的定義域?yàn)?,當(dāng)時(shí),,所以在單調(diào)遞減;當(dāng)時(shí),,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,令則原方程轉(zhuǎn)化為,令,.令,,∴,,,,,當(dāng)時(shí),,當(dāng)時(shí),.如圖可知①當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);②當(dāng)時(shí),有兩個(gè)零點(diǎn),即有兩個(gè)零點(diǎn);③當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);④時(shí),此時(shí)無(wú)零點(diǎn),即此時(shí)無(wú)零點(diǎn).【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性的方法,同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)零點(diǎn)的問(wèn)題,屬于中檔題.20、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見(jiàn)解析【解析】

(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點(diǎn)可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號(hào)即可判斷單調(diào)區(qū)間.(2)當(dāng)時(shí),.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點(diǎn)存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對(duì)數(shù)式變形化簡(jiǎn)可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域?yàn)?,在單調(diào)遞增,而,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,此時(shí)是函數(shù)的極小值點(diǎn),的遞減區(qū)間為,遞增區(qū)間為(2)證明:當(dāng)時(shí),,因此要證當(dāng)時(shí),,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增,因此當(dāng)時(shí),函數(shù)取得最小值,,,故,從而,即,結(jié)論成立.【點(diǎn)睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)證明不等式恒成立,構(gòu)造函數(shù)法的綜合應(yīng)用,屬于難題.21、(Ⅰ)見(jiàn)證明;(Ⅱ)【解析】

(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類(lèi)型,利用分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論