2023-2024學年廣東省廣州市海珠區(qū)中考五模數學試題含解析_第1頁
2023-2024學年廣東省廣州市海珠區(qū)中考五模數學試題含解析_第2頁
2023-2024學年廣東省廣州市海珠區(qū)中考五模數學試題含解析_第3頁
2023-2024學年廣東省廣州市海珠區(qū)中考五模數學試題含解析_第4頁
2023-2024學年廣東省廣州市海珠區(qū)中考五模數學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省廣州市海珠區(qū)中考五模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列計算,正確的是()A.a2?a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+12.對于二次函數,下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點3.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°4.如下圖所示,該幾何體的俯視圖是()A. B. C. D.5.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π6.3的相反數是()A.﹣3 B.3 C. D.﹣7.下列函數中,y關于x的二次函數是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x28.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數是()A.30° B.15° C.18° D.20°9.下列圖形中,是正方體表面展開圖的是()A. B. C. D.10.二元一次方程組的解是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:3a3﹣3a=_____.12.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點B的坐標為B(),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數的圖像上,那么k的值是_______13.不等式組的解集為_____.14.如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數y=-.如果此時四邊形的面積等于,那么點的坐標是________.15.若與是同類項,則的立方根是.16.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.18.(8分)如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.19.(8分)(5分)計算:(120.(8分)某工廠現(xiàn)在平均每天比原計劃多生產50臺機器,現(xiàn)在生產600臺機器所需要時間與原計劃生產450臺機器所需時間相同.現(xiàn)在平均每天生產多少臺機器;生產3000臺機器,現(xiàn)在比原計劃提前幾天完成.21.(8分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數)參考數據:sin37≈0.60,cos37°=0.80,tan37°≈0.7522.(10分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)23.(12分)北京時間2019年3月10日0時28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號乙運載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進入預定軌道.如圖,火星從地面處發(fā)射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數據:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求發(fā)射臺與雷達站之間的距離;(Ⅱ)求這枚火箭從到的平均速度是多少(結果精確到0.01)?24.如圖,一次函數y=-x+5的圖象與反比例函數y=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.求反比例函數的解析式;在第一象限內,當一次函數y=-x+5的值大于反比例函數y=(k≠0)的值時,寫出自變量x的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.2、B【解析】

二次函數,所以二次函數的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數的性質.3、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.4、B【解析】

根據俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.5、C【解析】

根據題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.6、A【解析】試題分析:根據相反數的概念知:1的相反數是﹣1.故選A.【考點】相反數.7、B【解析】

判斷一個函數是不是二次函數,在關系式是整式的前提下,如果把關系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數,a≠0)的形式,那么這個函數就是二次函數,否則就不是.【詳解】A.當a=0時,y=ax2+bx+c=bx+c,不是二次函數,故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數,故符合題意;C.的自變量在分母中,不是二次函數,故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數,故不符合題意;故選B.【點睛】本題考查了二次函數的定義,一般地,形如y=ax2+bx+c(a,b,c為常數,a≠0)的函數叫做二次函數,據此求解即可.8、C【解析】

∠1的度數是正五邊形的內角與正方形的內角的度數的差,根據多邊形的內角和定理求得角的度數,進而求解.【詳解】∵正五邊形的內角的度數是×(5-2)×180°=108°,正方形的內角是90°,

∴∠1=108°-90°=18°.故選C【點睛】本題考查了多邊形的內角和定理、正五邊形和正方形的性質,求得正五邊形的內角的度數是關鍵.9、C【解析】

利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.10、B【解析】

利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.【點睛】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.二、填空題(本大題共6個小題,每小題3分,共18分)11、3a(a+1)(a﹣1).【解析】

首先提取公因式3a,進而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.12、-12【解析】過E點作EF⊥OC于F,如圖所示:

由條件可知:OE=OA=5,,所以EF=3,OF=4,

則E點坐標為(-4,3)

設反比例函數的解析式是y=,則有k=-4×3=-12.故答案是:-12.13、﹣2≤x<【解析】

根據解不等式的步驟從而得到答案.【詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【點睛】本題主要考查了解不等式,解本題的要點在于分別求解①,②不等式,從而得到答案.14、(-5,)【解析】分析:依據點B的坐標是(2,2),BB2∥AA2,可得點B2的縱坐標為2,再根據點B2落在函數y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據四邊形AA2C2C的面積等于,可得OC=,進而得到點C2的坐標是(﹣5,).詳解:如圖,∵點B的坐標是(2,2),BB2∥AA2,∴點B2的縱坐標為2.又∵點B2落在函數y=﹣的圖象上,∴當y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數的綜合題的知識,解答本題的關鍵是熟練掌握反比例函數的性質以及平移的性質.在平面直角坐標系內,把一個圖形各個點的橫坐標都加上(或減去)一個整數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度.15、2.【解析】試題分析:若與是同類項,則:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案為2.考點:2.立方根;2.合并同類項;3.解二元一次方程組;4.綜合題.16、3:2【解析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.三、解答題(共8題,共72分)17、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解析】

(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結論,可證得EC=CF,根據等腰三角形三線合一的性質可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.18、(1)詳見解析;(2).【解析】

(1)利用基本作圖(作一個角等于已知角和作已知線段的垂直平分線)作出BD和EF;(2)先證明四邊形BEDF為菱形,再利用含30度的直角三角形三邊的關系求出BF和CD,然后利用菱形的面積公式求解.【詳解】(1)如圖,DE、DF為所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD為∠ABC的角平分線,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四邊形BEDF為平行四邊形,而FB=FD,∴四邊形BEDF為菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四邊形BFDE的面積=4×2=8.故答案為:8.【點睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).19、8+23【解析】試題分析:利用負整數指數冪,零指數冪、絕對值、特殊角的三角函數值的定義解答.試題解析:原式=9+1-(2-3)+2×3考點:1.實數的運算;2.零指數冪;3.負整數指數冪;4.特殊角的三角函數值.20、(1)現(xiàn)在平均每天生產1臺機器.(2)現(xiàn)在比原計劃提前5天完成.【解析】

(1)因為現(xiàn)在生產600臺機器的時間與原計劃生產450臺機器的時間相同.所以可得等量關系為:現(xiàn)在生產600臺機器時間=原計劃生產450臺時間,由此列出方程解答即可;(2)由(1)中解得的數據,原來用的時間-現(xiàn)在用的時間即可求得提前時間.【詳解】解:(1)設現(xiàn)在平均每天生產x臺機器,則原計劃可生產(x-50)臺.依題意得:,解得:x=1.檢驗x=1是原分式方程的解.(2)由題意得=20-15=5(天)∴現(xiàn)在比原計劃提前5天完成.【點睛】此題考查分式方程的實際運用,找出題目蘊含的數量關系是解決問題的關鍵.21、景點A與B之間的距離大約為280米【解析】

由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點A與B之間的距離大約為280米.【點睛】本題考查了解直角三角形的應用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.22、小時【解析】

過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時間大約為:50÷40=(小時).考點:解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論