新疆昌吉回族自治州木壘縣第一中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
新疆昌吉回族自治州木壘縣第一中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
新疆昌吉回族自治州木壘縣第一中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
新疆昌吉回族自治州木壘縣第一中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
新疆昌吉回族自治州木壘縣第一中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個盒子里有4個分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種2.已知集合,定義集合,則等于()A. B.C. D.3.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點(diǎn)有無窮多個4.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.15.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.126.已知函數(shù),若關(guān)于的方程有4個不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.7.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.88.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.9.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位10.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()A. B.或 C. D.11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.已知向量,,則向量與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,其中,.且,則集合中所有元素的和為_________.14.已知等比數(shù)列滿足,,則該數(shù)列的前5項(xiàng)的和為______________.15.已知集合,則_______.16.設(shè)命題:,,則:__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.19.(12分)小麗在同一城市開的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調(diào)劑1人到該店維持營業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(2)設(shè)營業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.20.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.21.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.22.(10分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進(jìn)而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C【點(diǎn)睛】本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因?yàn)榧希?,則,所以.故選:C.【點(diǎn)睛】本題考查集合的新定義運(yùn)算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.3、D【解析】

運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無窮多個;因?yàn)?,,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【點(diǎn)睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.4、B【解析】

根據(jù)分段函數(shù)表達(dá)式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,.故選:B【點(diǎn)睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運(yùn)算能力,分析問題、解決問題的能力.5、D【解析】

推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.6、C【解析】

求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個不同的實(shí)數(shù)根等價于方程在上有兩個不同的實(shí)數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當(dāng)時,,當(dāng),,且,故方程在上有兩個不同的實(shí)數(shù)根,故,解得.故選:C.【點(diǎn)睛】本題考查確定函數(shù)零點(diǎn)或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點(diǎn)個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點(diǎn)值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點(diǎn)存在性定理判斷函數(shù)在某區(qū)間上有零點(diǎn),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點(diǎn)值符號,進(jìn)而判斷函數(shù)在該區(qū)間上零點(diǎn)的個數(shù).7、A【解析】

由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.8、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.9、C【解析】

根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.10、C【解析】

由可得,故可求的值.【詳解】因?yàn)?,所以,故,因?yàn)檎?xiàng)等比數(shù)列,故,所以,故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.11、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、C【解析】

求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進(jìn)行計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13、2889【解析】

先計(jì)算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時,集合中最小數(shù);當(dāng)時,得到集合中最大的數(shù);故答案為:2889【點(diǎn)睛】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、31【解析】設(shè),可化為,得,,,15、【解析】

由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因?yàn)樗约现械脑貫槠鏀?shù),所以.【點(diǎn)睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.16、,【解析】

存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對全(特)稱命題進(jìn)行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.18、(1)證明見解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.19、(1)(2)見解析,【解析】

(1)根據(jù)題意設(shè)出事件,列出概率,運(yùn)用公式求解;(2)由題得,X的所有可能取值為,根據(jù)(1)和變量對應(yīng)的事件,可得變量對應(yīng)的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發(fā)生調(diào)劑現(xiàn)象的概率為P.則,,.所以.答:發(fā)生調(diào)劑現(xiàn)象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點(diǎn)睛】本題是一道考查概率和期望的??碱}型.20、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】

(1)運(yùn)用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因?yàn)闉殇J角三角形,所以,解得因此,那么【點(diǎn)睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運(yùn)算能力.21、(1)證明見解析(2)45°【解析】

(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點(diǎn)睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論