版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.拋物線y=x2先向右平移1個單位,再向上平移3個單位,得到新的拋物線解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+32.二次函數的圖象如圖,則一次函數的圖象經過()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限3.若是方程的兩根,則的值是()A. B. C. D.4.給出下列一組數:,,,,,其中無理數的個數為()A.0 B.1 C.2 D.35.如圖,晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子()A.逐漸變短 B.先變短后變長C.先變長后變短 D.逐漸變長6.如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD,依據此圖可求得tan75°的值為()A. B. C. D.7.如圖一段拋物線y=x2﹣3x(0≤x≤3),記為C1,它與x軸于點O和A1:將C1繞旋轉180°得到C2,交x軸于A2;將C2繞旋轉180°得到C3,交x軸于A3,如此進行下去,若點P(2020,m)在某段拋物線上,則m的值為()A.0 B.﹣ C.2 D.﹣28.下列計算,正確的是()A.a2·a3=a6 B.3a2-a2=2 C.a8÷a2=a4 D.(a2)3=a69.如圖,在平面直角坐標系中,已知正比例函數的圖象與反比例函數的圖象交于,兩點,當時,自變量的取值范圍是()A. B.C.或 D.或10.在平面直角坐標系中,以原點為位似中心,位似比為:,將縮小,若點坐標,,則點對應點坐標為()A., B. C.或, D.,或,11.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°12.如圖,若點P在反比例函數y=(k≠0)的圖象上,過點P作PM⊥x軸于點M,PN⊥y軸于點N,若矩形PMON的面積為6,則k的值是()A.-3 B.3 C.-6 D.6二、填空題(每題4分,共24分)13.一個不透明的布袋里裝有100個只有顏色不同的球,這100個球中有m個紅球通過大量重復試驗后發(fā)現,從布袋中隨機摸出一個球摸到紅球的頻率穩(wěn)定在左右,則m的值約為______.14.如圖,以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′的面積比是_____.15.如圖,在Rt△ABC中,∠ACB=90°,CB=4,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為_____.16.寫出一個你認為的必然事件_________.17.已知中,,交于,且,,,,則的長度為________.18.已知中,,,,則的長為__________.三、解答題(共78分)19.(8分)定義:如圖1,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,若∠MPN繞點P旋轉時始終滿足OM?ON=OP2,則稱∠MPN是∠AOB的“相關角”.(1)如圖1,已知∠AOB=60°,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,且∠MPN=150°.求證:∠MPN是∠AOB的“相關角”;(2)如圖2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相關角”,連結MN,用含α的式子分別表示∠MPN的度數和△MON的面積;(3)如圖3,C是函數(x0)圖象上的一個動點,過點C的直線CD分別交x軸和y軸于點A,B兩點,且滿足BC=3CA,∠AOB的“相關角”為∠APB,請直接寫出OP的長及相應點P的坐標.20.(8分)問題情境:在綜合實踐課上,老師讓同學們以“菱形紙片的剪拼”為主題開展數學活動,如圖(1),將一張菱形紙片ABCD(∠BAD=60°)沿對角線AC剪開,得到△ABC和△ACD操作發(fā)現:(1)將圖(1)中的△ABC以A為旋轉中心,順時針方向旋轉角α(0°<α<60°)得到如圖(2)所示△ABC′,分別延長BC′和DC交于點E,發(fā)現CE=C′E.請你證明這個結論.(2)在問題(1)的基礎上,當旋轉角α等于多少度時,四邊形ACEC′是菱形?請你利用圖(3)說明理由.拓展探究:(3)在滿足問題(2)的基礎上,過點C′作C′F⊥AC,與DC交于點F.試判斷AD、DF與AC的數量關系,并說明理由.21.(8分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=1.(1)求拋物線的函數表達式.(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.22.(10分)如圖,在中,點在邊上,.點在邊上,.(1)求證:;(2)若,求的長.23.(10分)甲、乙兩個袋中均裝有三張除所標數值外完全相同的卡片,甲袋中的三張卡片上所標有的三個數值為﹣7,﹣1,1.乙袋中的三張卡片所標的數值為﹣2,1,2.先從甲袋中隨機取出一張卡片,用x表示取出的卡片上的數值,再從乙袋中隨機取出一張卡片,用y表示取出卡片上的數值,把x、y分別作為點A的橫坐標和縱坐標.(1)用適當的方法寫出點A(x,y)的所有情況.(2)求點A落在第三象限的概率.24.(10分)如圖,AB為⊙O的直徑,弦AC的長為8cm.(1)尺規(guī)作圖:過圓心O作弦AC的垂線DE,交弦AC于點D,交優(yōu)弧于點E;(保留作圖痕跡,不要求寫作法);(2)若DE的長為8cm,求直徑AB的長.25.(12分)如圖,已知反比例函數(k1>0)與一次函數相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.(1)求出反比例函數與一次函數的解析式;(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數y1的值大于一次函數y2的值.26.如圖,在△ABC中,AB=4cm,AC=6cm.(1)作圖:作BC邊的垂直平分線分別交與AC,BC于點D,E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,連結BD,求△ABD的周長.
參考答案一、選擇題(每題4分,共48分)1、D【分析】按“左加右減,上加下減”的規(guī)律平移即可得出所求函數的解析式.【詳解】拋物線y=x2先向右平移1個單位得y=(x﹣1)2,再向上平移3個單位得y=(x﹣1)2+3.故選D.【點睛】本題考查了二次函數圖象的平移,其規(guī)律是是:將二次函數解析式轉化成頂點式y(tǒng)=a(x-h)2+k
(a,b,c為常數,a≠0),確定其頂點坐標(h,k),在原有函數的基礎上“h值正右移,負左移;k值正上移,負下移”.2、C【解析】∵拋物線的頂點在第四象限,∴﹣>1,<1.∴<1,∴一次函數的圖象經過二、三、四象限.故選C.3、D【解析】試題分析:x1+x2=-=6,故選D考點:根與系數的關系4、C【分析】直接利用無理數的定義分析得出答案.【詳解】解:,,,,,其中無理數為,,共2個數.故選C.【點睛】此題考查無理數,正確把握無理數的定義是解題關鍵.5、B【分析】小亮由A處徑直路燈下,他得影子由長變短,再從路燈下到B處,他的影子則由短變長.【詳解】晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子先變短,再變長.故選B.【點睛】本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影.6、B【解析】在直角三角形ABC中,利用30度所對的直角邊等于斜邊的一半表示出AB的長,再利用勾股定理求出BC的長,由CB+BD求出CD的長,在直角三角形ACD中,利用銳角三角函數定義求出所求即可.【詳解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,則tan75°=tan∠CAD===2+,故選B【點睛】本題考查了解直角三角形,熟練掌握三角函數是解題的關鍵.7、C【分析】先求出點A1的坐標,再根據旋轉的性質求出點A1的坐標,然后根據圖象上點的縱坐標循環(huán)規(guī)律即可求出m的值.【詳解】當y=0時,x1﹣3x=0,解得:x1=0,x1=3,∴點A1的坐標為(3,0).由旋轉的性質,可知:點A1的坐標為(6,0).∵1010÷6=336……4,∴當x=4時,y=m.由圖象可知:當x=1時的y值與當x=4時的y值互為相反數,∴m=﹣(1×1﹣3×1)=1.故選:C.【點睛】此題考查的是探索規(guī)律題和求拋物線上點的坐標,找出圖象上點的縱坐標循環(huán)規(guī)律是解決此題的關鍵.8、D【分析】按照整式乘法、合并同類項、整式除法、冪的乘方依次化簡即可得到答案.【詳解】A.a2·a3=a5,故該項錯誤;B.3a2-a2=2a2,故該項錯誤;C.a8÷a2=a6,故該項錯誤;D.(a2)3=a6正確,故選:D.【點睛】此題考查整式的化簡計算,熟記整式乘法、合并同類項、整式除法、冪的乘方的計算方法即可正確解答.9、D【解析】顯然當y1>y2時,正比例函數的圖象在反比例函數圖象的上方,結合圖形可直接得出結論.【詳解】∵正比例函數y1=k1x的圖象與反比例函數的圖象交于A(-1,-2),B(1,2)點,
∴當y1>y2時,自變量x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查了反比例函數與一次函數的交點問題,數形結合的思想是解題的關鍵.10、C【分析】若位似比是k,則原圖形上的點,經過位似變化得到的對應點的坐標是或.【詳解】∵以原點O為位似中心,位似比為1:2,將縮小,∴點對應點的坐標為:或.
故選:C.【點睛】本題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應點的坐標比等于.11、A【分析】首先根據旋轉的性質,得出∠CBD=∠ABE,BD=BE;其次結合圖形,由等量代換,得∠EBD=∠ABC;最后根據等腰三角形的性質,得出∠BED=∠BDE,利用三角形內角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.【點睛】本題主要考查了旋轉的性質、等腰三角形的性質,以及三角形內角和定理.解題的關鍵是根據旋轉的性質得出旋轉前后的對應角、對應邊分別相等,利用等腰三角形的性質得出“等邊對等角”,再結合三角形內角和定理,即可得解.12、C【解析】設PN=a,PM=b,則ab=6,∵P點在第二象限,∴P(-a,b),代入y=中,得k=-ab=-6,故選C.二、填空題(每題4分,共24分)13、1【解析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出方程求解.【詳解】根據題意,得:,解得:,故答案為:1.【點睛】此題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率用到的知識點為:概率所求情況數與總情況數之比.14、1:1.【解析】根據位似變換的性質定義得到四邊形ABCD與四邊形A′B′C′D′相似,根據相似多邊形的性質計算即可.【詳解】解:以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′相似,相似比為1:2,∴四邊形ABCD與四邊形A′B′C′D′的面積比是1:1,故答案為:1:1.【點睛】本題考查的是位似變換,如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形.15、.【分析】根據題意,用的面積減去扇形的面積,即為所求.【詳解】由題意可得,AB=2BC,∠ACB=90°,弓形BD與弓形AD完全一樣,則∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴陰影部分的面積為:=,故答案為:.【點睛】本題考查不規(guī)則圖形面積的求法,屬中檔題.16、甕中捉鱉(答案不唯一)【分析】此題根據事件的可能性舉例即可.【詳解】必然事件就是一定會發(fā)生的,例如:甕中捉鱉等,故答案:甕中捉鱉(答案不唯一).【點睛】此題考查事件的可能性:必然事件的概念.17、【分析】過B作BF⊥CD于F,BG⊥BF交AD的延長線于G,則四邊形DGBF是矩形,由矩形的性質得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=1.設DE=9x,則CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-1.證明△FEB∽△DEA,根據相似三角形的對應邊成比例可求出x的值,進而得到AD,DE的長.在Rt△ADE中,由勾股定理即可得出結論.【詳解】如圖,過B作BF⊥CD于F,BG⊥BF交AD的延長線于G,∴四邊形DGBF是矩形,∴BG=DF,DG=FB.∵∠BCD=45°,∴△BFC是等腰直角三角形.∵BC=,∴FC=BF=1.設DE=9x,則CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,∵AC=AB,∴,∴,解得:AD=16x-1.∵FB∥AD,∴△FEB∽△DEA,∴,∴,∴18x1-16x+1=0,解得:x=或x=.當x=時,7x-1<0,不合題意,舍去,∴x=,∴AD=16x-1=6,DE=9x=,∴AE=.故答案為:.【點睛】本題考查了矩形的判定與性質以及相似三角形的判定與性質.求出AD=16x-1是解答本題的關鍵.18、5或1【分析】作交BC于D,分兩種情況:①D在線段BC上;②D在線段BC的延長線上,根據銳角三角函數值和勾股定理求解即可.【詳解】作交BC于D①D在線段BC上,如圖∵∴∴,在Rt△ACD中,由勾股定理得∴②D在線段BC的延長線上,如圖∵∴∴,在Rt△ACD中,由勾股定理得∴故答案為:5或1.【點睛】本題考查了解三角形的問題,掌握銳角的三角函數以及勾股定理是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2);(3),P點坐標為或【分析】(1)由角平分線求出∠MOP=∠NOP=∠AOB=30°,再證出∠OMP=∠OPN,證明△MOP∽△PON,即可得出結論;(2)由∠MPN是∠AOB的“相關角”,判斷出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;過點M作MH⊥OB于H,由三角形的面積公式得出:S△MON=ON?MH,即可得出結論;(3)設點C(a,b),則ab=3,過點C作CH⊥OA于H;分兩種情況:①當點B在y軸正半軸上時;當點A在x軸的負半軸上時,BC=3CA不可能;當點A在x軸的正半軸上時;先求出,由平行線得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA?OB,根據∠APB是∠AOB的“相關角”,得出OP,即可得出點P的坐標;②當點B在y軸的負半軸上時;同①的方法即可得出結論.【詳解】(1)證明:∵∠AOB=60°,P為∠AOB的平分線上一點,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM?ON,∴∠MPN是∠AOB的“相關角”;(2)解:∵∠MPN是∠AOB的“相關角”,∴OM?ON=OP2,∴,∵P為∠AOB的平分線上一點,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;過點M作MH⊥OB于H,如圖2,則S△MON=ON?MH=ON?OMsinα=OP2?sinα,∵OP=3,∴S△MON=sinα;(3)設點C(a,b),則ab=4,過點C作CH⊥OA于H;分兩種情況:①當點B在y軸正半軸上時;Ⅰ、當點A在x軸的負半軸上,如圖3所示:BC=3CA不可能,Ⅱ、當點A在x軸的正半軸上時,如圖4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA?OB=a?4b=ab=,∵∠APB是∠AOB的“相關角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點P的坐標為:;②當點B在y軸的負半軸上時,如圖5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA?OB=a?2b=ab=,∵∠APB是∠AOB的“相關角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點P的坐標為:;綜上所述:點P的坐標為:或.【點睛】本題考查反比例函數與幾何綜合,掌握數形結合和分類討論的思想是解題的關鍵.20、(1)見解析;(2)當α=30°時,四邊形AC′EC是菱形,理由見解析;(3)AD+DF=AC,理由見解析【分析】(1)先判斷出∠ACC′=∠AC′C,進而判斷出∠ECC′=∠EC′C,即可得出結論;
(2)判斷出四邊形AC′EC是平行四邊形,即可得出結論;
(3)先判斷出HAC′是等邊三角形,得出AH=AC′,∠H=60°,再判斷出△HDF是等邊三角形,即可得出結論.【詳解】(1)證明:如圖2,連接CC′,∵四邊形ABCD是菱形,∴∠ACD=∠AC′B=30°,AC=AC′,∴∠ACC′=∠AC′C,∴∠ECC′=∠EC′C,∴CE=C′E;(2)當α=30°時,四邊形AC′EC是菱形,理由:∵∠DCA=∠CAC′=∠AC′B=30°,∴CE∥AC′,AC∥C′E,∴四邊形AC′EC是平行四邊形,又∵CE=C′E,∴四邊形AC′EC是菱形;(3)AD+DF=AC.理由:如圖4,分別延長CF與AD交于點H,∵∠DAC=∠C′AC=30°,C′F⊥AC,∴∠AC′H=∠DAC′=60°,∴△HAC′是等邊三角形,∴AH=AC′,∠H=60°,又∵AD=DC,∴∠DAC=∠DCA=30°,∴∠HDC=∠DAC+∠DCA=60°,∴△HDF是等邊三角形,∴DH=DF,∴AD+DF=AD+DH=AH.∵AC′=AC,∴AC=AD+DF.【點睛】此題是四邊形綜合題,主要考查了旋轉的旋轉,等邊三角形的判定和旋轉,菱形的判定和性質,判斷出△HAC′是等邊三角形是解本題的關鍵.21、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【分析】(1)由點E的坐標設拋物線的交點式,再把點D的坐標(2,1)代入計算可得;
(2)由拋物線的對稱性得BE=OA=t,據此知AB=10-2t,再由x=t時AD=,根據矩形的周長公式列出函數解析式,配方成頂點式即可得;
(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P知PQ是△OBD中位線,據此可得.【詳解】(1)設拋物線解析式為,當時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數表達式為;(2)由拋物線的對稱性得,,當時,,矩形的周長,,,,當時,矩形的周長有最大值,最大值為;(3)如圖,當時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、二次函數的性質及平移變換的性質等知識點.22、(1)證明見解析;(2).【分析】(1)先通過平角的度數為180°證明,再根據即可證明;(2)根據得出相似比,即可求出的長.【詳解】(1)證明:,又(2)【點睛】本題考查了相似三角形的問題,掌握相似三角形的性質以及判定定理是解題的關鍵.23、(1)(﹣7,﹣2),(﹣1,﹣2),(1,﹣2),(﹣7,1),(﹣1,1),(1,1),(﹣7,2),(﹣1,2),(1,2);(2).【分析】列表法或樹狀圖法,平面直角坐標系中各象限點的特征,概率.(1)直接利用表格或樹狀圖列舉即可解答.(2)利用(1)中的表格,根據第三象限點(-,-)的特征求出點A落在第三象限共有兩種情況,再除以點A的所有情況即可.【詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年圖書發(fā)行銷售宣傳渠道合約條款
- 2025年AR技術轉讓協(xié)議
- 2025年夜間城市觀光合同
- 2025年出口信用保險保險合同(簽名版)
- 二零二五版校園食堂食品安全合作協(xié)議3篇
- 2025版專業(yè)房產行紀委托買賣合同細則3篇
- 2024離婚涉及的競業(yè)限制合同
- 2025年度高層建筑石材鋼架施工安全防護與質量保證合同4篇
- 2024起訴離婚后子女撫養(yǎng)權及監(jiān)護權糾紛調解服務協(xié)議3篇
- 二零二五年度租賃房屋租賃合同登記備案協(xié)議
- 標點符號的研究報告
- 服務器報價表
- 2025年高考化學試題分析及復習策略講座
- 2024-2029年中國制漿系統(tǒng)行業(yè)市場現狀分析及競爭格局與投資發(fā)展研究報告
- 大門封條模板
- 【“凡爾賽”網絡流行語的形成及傳播研究11000字(論文)】
- ppr管件注塑工藝
- 液化氣站其他危險和有害因素辨識及分析
- 高中語文教學課例《勸學》課程思政核心素養(yǎng)教學設計及總結反思
- 中國農業(yè)銀行小微企業(yè)信貸業(yè)務貸后管理辦法規(guī)定
- 市政道路建設工程竣工驗收質量自評報告
評論
0/150
提交評論