版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter1
KinematicsofaParticle§1.1Motionequationofaparticle§1.2
Velocityandaccelerationofaparticle
Maincontents1.1MotionequationofaparticleThreetypicalmotionequation(1)Motionequationusing
vector(2)Motionequationusingrectangularcoordinate1.1Motionequationofaparticle(3)MotionequationusingnaturalcoordinateThreetypicalmotionequationThecrankofellipticcompassescanrotatearoundfixedaxisO,theendAishingedwithBC;ThepointsBandCcanmovealongtheverticalslidingchutes,respectively.FindthetrajectoryequationofaarbitrarypointMonBC.KnownExample11.1MotionequationofaparticleSolution:Consideranarbitraryposition,thecoordinateofMcanbeexpressedasfollowing:Eliminate
intheaboveequations,thetrajectoryequationofMcanbeobtainedas:
1.1Motionequationofaparticle1.2Velocityandaccelerationofaparticle(1)DefinitionforvelocityandaccelerationofaparticleusingvectorDisplacement:Velocity:Acceleration:(2)Definitionforvelocityandaccelerationofaparticleontherectangularcoordinate(3)
ProjectionforvelocityandaccelerationofaparticleonthenaturalaxesTangentNormalplaneOsculatingplanePrincipalnormalSubnormal(a)Naturalcoordinatesystem1.2Velocityandaccelerationofaparticle(3)
Projectionforvelocityandaccelerationofaparticleonthenaturalaxes(b)Velocityofaparticle(c)AccelerationofaparticleThefirstcomponentrepresentsthechangerateofspeedmagnitudefortheparticle,notedas()TangentialaccelerationThesecondcomponentrepresentsthechangerateofspeeddirectionfortheparticle,notedas()Normalacceleration1.2Velocityandaccelerationofaparticle(3)
Projectionforvelocityandaccelerationofaparticleonthenaturalaxes◆Tangentialacceleration◆NormalaccelerationTangentialacceleration
representsthechangerateofspeedmagnitudetotime,itsalgebraicvalueisequaltothefirstderivativeofthealgebraicvalueofvelocitytotime,orthesecondderivativeofcurvilinearcoordinatetotime,itisalongthetangentoftrajectory.
1.2Velocityandaccelerationofaparticle(1)Thevectormethodisusedtodeduceformula;(2)Therectangularcoordinateandnaturalcoordinatemethodsareusedtocalculate:Theadvantageofnaturalcoordinatemethodistheclearphysicalmeaningandmoresimplethanrectangularcoordinatemethod.Thedisadvantageisthetrajectorymustbeknown,whichlimitstheapplicability.Theadvantageofrectangularcoordinatemethodisthewideapplicability(whichcanonlybeusedwhenthetrajectoryisunknown).Thedisadvantageismorecomplexthannaturalcoordinatemethod.SummaryBothofthetwomethodsareneedtosolvesomeproblems
TheEnd
Chapter2FundamentalKinematicsofaRigidBody§2.1Translationalmotionofarigidbody§2.2Rotationofarigidbodyaboutafixedaxis§2.3Velocityandaccelerationofapointin
arigidbodyrotatingaboutafixedaxis
Maincontents1.
DefinitionThedirectionofthelinelinkingarbitrarytwopointsintherigidbodyneverchangesduringitsmotion.2.1Translationalmotionofarigidbody2.
FeaturesDifferentiate:Allparticlesinarigidbodywithtranslationalmotionhavethesametrajectories.Arbitrarytwoparticlesinarigidbodywithtranslationalmotionhavethesamevelocitiesandaccelerationsinthesameinstant.Themotionregularitiesofalltheparticlesinarigidbodywithtranslationalmotionarecompletelysame,sothetranslationofarigidbodycanbesimplifiedtothemotionofaparticleinit.2.1TranslationalmotionofarigidbodyExamplesoftranslationalmotion
2.1Translationalmotionofarigidbody1.
DefinitionTherearetwofixedpointsduringthemovementofarigidbody,itiscalledtherotationaboutafixedaxis.Theaxisisafixedlinethroughthetwofixedpoints.2.2Rotationofarigidbodyaboutafixedaxis2.FeaturesThedistancesbetweeneverypointintherigidbodyandthefixedaxisremainconstants.Everypointintherigidbodywhichisnotonthisaxismovesalongacircularpathinaplaneperpendiculartothisfixedaxis.3.Equationofrotationφ
isanalgebraicquantity.Signdefinitionofφ:followsright-handrule.φ
isthemonotropiccontinuousfunctionoftimet,whentherigidbodyrotates.
2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularaccelerationω
isanalgebraicquantitySigndefinitionofω:followsright-handrule.Unit:(1)Angularvelocity:
Inordertodescribethespeedanddirectionoftherotationofarigidbody,theangularvelocityisdefinedas,2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularacceleration(2)Angularacceleration:
Inordertodescribethespeedofangularvelocitychangedwithtimeoftherotationofarigidbody,theangularaccelerationisdefinedas,α
isanalgebraicquantitySigndefinitionofα:followsright-handrule.Unit:Arigidbodyhasacceleratedrotationwhenαand
havethesamesigns,deceleratedrotationwhenα
and
haveoppositesigns.
=const,uniformrotation.
α
=const,rotationwithconstantangularacceleration.2.2Rotationofarigidbodyaboutafixedaxis2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis1.Themotionequationdefinedbycurvilinearcoordinate
2.Velocityofapoint
Differentiatetheexpressionabovewithrespecttotimet,gives
∵,
,∴itcanbeobtainedas,Directionofvelocity:alongthetangentline,pointtotherotationdirection.3.AccelerationofapointNormalacceleration:Tangentialacceleration:TheaccelerationofpointM:Thedirectionofacceleration:2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis4.Thedistributionregularitiesofthevelocityandaccelerationintherotatedrigidbody(1)Ateverytime,thevelocityandaccelerationofapointareproportionaltoR.(2)Ateverytime,thedirectionsofthevelocityandaccelerationofapointareperpendiculartoR.Theangle
betweentheaccelerationofanypointanditsradiusisidentical.2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis
TheEnd
Chapter3ComplexMotionofParticle(orPoint)
§3.1Basicconceptofcomplexmotionofparticle
§
3.2Velocitycompositiontheoremofparticle§
3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation§
3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Maincontents1.
Whatiscomplexmotionofparticle?Motionisrelative.Amotionrelativetoareferenceobjectcanbecomposedofseveralsimplemotionsrelativetootherreferenceobjects.Themotioniscalled
complexmotion.2.ProblemstosolvebytheoryofcomplexmotionofparticleAcomplexmotioncanbedecomposedintotwosimplemotions.Thevaluesofcomplexmotioncanbecomposedbythoseoftwosimplemotions.Therelationsofthemotionofeverycomponentinthemovingmechanism.Therelationoftwomovingobjectswithoutdirectiveconnection.(1)AmovingpointApointintheresearchingobject.(2)Tworeferencesystems(3)Three
kindsof
motionsApoint,tworeferencesystems,andthreekindsofmotionsFixedreferencesystem:Areferencesystemfixedtotheearthground.Movingreferencesystem:
Areferencesystemfixedtoamovingobjectrelativetotheearthground.Absolutemotion:Motionofthemovingpointrelativetothefixedreferencesystem.Relativemotion:
Motionofthemovingpointrelativetothemovingreferencesystem.Transportmotion:Motionofthemovingreferencesystemrelativetothefixedreferencesystem.
3.1BasicconceptofcomplexmotionofparticleAbsolutemotionRelativemotionTransportmotionBothofabsolutemotionandrelativemotionaremotionsofaparticle.Transportmotionismotionofreferenceobject,actuallymotionofarigidbody.
3.1BasicconceptofcomplexmotionofparticleCorrespondingtoabsolutemotion:AbsolutetrajectoryAbsolute
velocityAbsoluteaccelerationCorrespondingtorelativemotion:
RelativetrajectoryRelativevelocityRelativeaccelerationThereisn’ttrajectoryfortransportmotion,becauseitisn’taparticle,butarigidbody.Correspondingtotransportmotion:TransportvelocityTransportaccelerationTransportvelocity
and
transportacceleration
arethevelocityandaccelerationofthepointinthemovingreferencesystemcoincidingwiththemovingpoint(transportpoint)
relativetothefixedreferencesystematanyinstantoftime.
3.1BasicconceptofcomplexmotionofparticleExample
3-1Crankrockermechanism,thecrankOAisconnectedtothesleevebypinA,andthesleeveissetontherockerO1B.WhenthecrankrotatesaroundtheOaxiswithangularvelocityω,therockerO1BisdriventoswingaroundtheO1axisthroughthesleeve.AnalyzethemotionoftheApoint.
3.1BasicconceptofcomplexmotionofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.1BasicconceptofcomplexmotionofparticleHowtoselectthemovingpointandmovingsystem1.Themovingsystemcanberegardedasaninfiniterigidbody,andthebasicmotionoftherigidbodyistranslationalandfixed-axisrotation.Therefore,themovingsystemisgenerallytakenasthecoordinatesystemoftranslationalmotionorfixed-axisrotation.2.Themovingpointandthemovingreferencecannotbechosenonthesameobject,otherwisetherelativemotionofthemovingpointwithrespecttothemovingreferencewilldisappear.3.Themovingpointmustalwaysbethesamepointinthesystem,andstudyitsmotionatdifferentmoments.Itisnotallowedtotakeapointatoneinstantandanotherpointasthemovingpointatthenextinstant.1.TheoremAtanyinstantoftime,theabsolutevelocityofamovingpointisequaltothegeometricsumofitsrelativevelocityandtransportvelocity.Thisisthe
velocitycompositiontheoremofpoint.
Theabsolutevelocityofamovingpointcanbedeterminedbythediagonallineoftheparallelogramcomposedbyitstransportvelocityandrelativevelocity.
Thisisthe
parallelogramofvelocity.
3.2Velocitycompositiontheoremofparticle
moveto
2.Provement
3.2VelocitycompositiontheoremofparticleExample
3-2
Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularvelocityω1oftherockingbarwhenthecrankmovestothehorizontalposition.
3.2VelocitycompositiontheoremofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.2Velocitycompositiontheoremofparticle3.VelocityanalysisvavevrAbsolutevelocityva:va=OA·ω
=rω,
Direction:verticaltoOA,plumbedupwardsTransportvelocity
ve:ve
istheunknownquantity,andneedtobesolvedDirection:verticaltoO1BRelativevelocityvr:themagnitudeisunknownDirection:alongtherockingbarO1B
Accordingtothevelocitycompositiontheoremofapoint
3.2Velocitycompositiontheoremofparticle∵∴Supposetheangularvelocityoftherockingbaratthemomentisω1,yieldsSovavevr
3.2Velocitycompositiontheoremofparticle1.Relativeandabsolutederivativeofvector●MOxyzisafixedcoordinatesystem,andO1x1y1z1isamotioncoordinatesystem,theradiusvectorofthemovingpointMinthemotionsystemisWetakethetimederivativeinthefixedsystemtoobtainThisistheabsoluterateofchangeofthevectorr1Takethederivativeofr1withrespecttotimeinthemotionsystemtoobtainThisistherelativerateofchangeofthevectorr13.3Accelerationcompositiontheoremwhenthetransportmotionistranslation2.Threekindsofaccelerations(1)Absoluteacceleration(2)Relativeacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M2.Threekindsofaccelerations(3)Transportacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M3.AccelerationcompositiontheoremWhenthemotionsystemistranslatingmotion,andi1,j1,k1
areconstantvectors,andtheirmagnitudesanddirectionsareconstant,sotheirtimederivativesareallzero,wecangetAccelerationcompositiontheoremwhenthetransportmotionistranslation3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●MExample
3-3
Aplanemechanismshowninthefigure,thecrankOA=r,rotatesuniformlywithangularvelocityω0.SleeveAcanslidsalongthebarBC.BC=DE,且BD=CE=l.FindtheangularvelocityandangularaccelerationofBDatthemomentshowninthefigure.ABCDEOω0ωαSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystemMovingreferencesystem-Cx′y′,fixedtothebar
BC.2.MotionanalysisTransportmotion-translationMovingpoint-slideblock
A.Fixedreferencesystem-
fixedtothebase.ABCDEOω0ωαx'y'Absolutemotion-CircularmotionwithcentreORelativemotion-straightlinemotionalongBCABCDEOω0ωαvBvevavr3.VelocityanalysisyieldsSotheangularvelocityof
BDAbsolute
velocity
va:va=ω0r,verticalto
OA
downwards.
Transportvelocity
ve:ve=
vB,verticalto
BDrightdownwands.
Relativevelocity
vr:magnitudeunknown,along
BCleftEmployingthetheoremofcompositionofvelocities4.AccelerationanalysisAbsoluteacceleration
aa:aa=ωor
,along
OA,pointtoOTransportaccelerationae:tangentialcomponentaet:sametoaBt,magnitude
unknown,verticaltoDB,
supposedownwardsRelativeacceleration
ar:magnitude
unknown,along
BC,
supposetoleftnormalcomponentaen:aen
=aBn=
ω2l
=ωo2r2
/l,alongDB,
pointtoDaaarABCDEOω0ωα
Projecttoaxisy,
yieldsyieldsApplyingthecompositiontheoremofaccelerationsSotheangularaccelerationof
BD:
aaarABCDEOωαyAfixedcoordinatesystemOxyzandmotioncoordinatesystemOx1y1z1,letthemovingpointMmoveinthemotionsystemOx1y1z1,andthemotionsystemOx1y1z1rotatesaboutthez-axisofthefixedsystemwithangularvelocityωandangularaccelerationε●MBasedonthepreviousproofofthevelocitycompositiontheorem,wehave
TherelativevelocityandrelativeaccelerationofthemovingpointM3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationAndthen
Basedonthevelocitycompositiontheorem:AccordingtothePoissonformula:3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Coriolisacceleration:Thisistheaccelerationcompositiontheoremwhenthetransportmotionisrotation.3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationExample
3-4Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularaccelerationα1oftherockingbarwhenthecrankmovestothehorizontalposition.
Basedonthe
velocityanalysisobtainedfromlastclass,weknowthatSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Movingreferencesystem-O1x1y1,fixedtorockingbarO1B.Movingpoint-slideblock
A.vavevry1x1Fixedreferencesystem-Fixedtothe
base2.AccelerationanalysisAbsoluteacceleration
aa:
aa
=ω2r
,along
OA,pointto
O.Relative
acceleration
ar:magnitude
is
unknown
,suppose
it
is
along
O1B
upwards.
Tangential
component
aet:magnitude
is
unknown,
vertical
to
O1B,supposerightdownwardsTransport
acceleration:Normal
component
:
along
O1A,point
to
O1Coriolis
acceleration
aC:verticaltoO1B,showninthefigurex'y'O1Oφωω1ABaaaraCProjectitto
O1x'yieldsTheangularaccelerationofrockingbar:α1Applyingtheaccelerationcompositiontheoremx'y'O1Oφωω1ABaaaraCor
TheEnd
Chapter4
PlanarMotionofaRigidBody§
4.1Basicconceptanddecompositionofrigidbodyplanarmotion
Maincontents§4.2
Velocityofanypointinaplanarmotion§4.3
Accelerationofanypointinaplanarmotion1.Whatisplanarmotionofarigidbody?Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.Thismotionofrigidbodyiscalled
planarmotionofarigidbody.4.1Basicconceptanddecompositionofrigidbodyplanarmotion2.SimplificationofaplanarmotionTheplanarmotionofarigidbodycanbesimplifiedtoamotionofaplanegraphintheplaneitselfwithoutconsideringitsthickness.
(a)Connectingrodmotion(b)Simplificationofconnectingrodmotion4.1Basicconceptanddecompositionofrigidbodyplanarmotion3.EquationsofplanarmotionSTodeterminethemotionofaplanegraph,choosethefixedreferencesystemOxy,anarbitrarypointO'intheplanegraphS,anarbitrarylinesegmentO'M.Todeterminetheplanarmotionofarigidbody,onlythepositionofthelinesegmentO'Minthisgraphisneededtobedetermined.EquationsofplanarmotionAplanemotioncanberegardedasthecompositionofa
translation
androtation.4.1Basicconceptanddecompositionofrigidbodyplanarmotion4.Planarmotioncanbedecomposedintotranslationandrotation
Aplanemotionofarigidbodycanbedecomposedintoa
translationwithabasicpointanda
rotation
aboutanaxisthatpassesthroughthebasicpoint.Thevelocityandaccelerationofthe
translation
withabasicpoint
intheplanegraphdependson
theselectionof
thebasicpoint,however,theangularvelocityandaccelerationoftherotationabouttheselectedbasicpoint
doesn’tdependon
thechoiceofthebasicpoint.4.1BasicconceptanddecompositionofrigidbodyplanarmotionAThevelocityofpointAintheplanegraphSis,andtherotationalvelocityoftheplanegraphis.SelectAasthebasicpoint;ThemovingreferencesystemattachedtopointA;Thetransportmotionistranslationwiththebasicpoint
A;Therelativemotionisrotationaboutthebasicpoint
A.(1)Basicpointmethod
·BDeterminethevelocityofpointBintheplanegraph.4.2VelocityofanypointinaplanarmotionABTheorem:Forplanarmotionofarigidbody,thevelocityofanypointinthegraphcanbeobtainedasthevectorsumofthevelocityofthebasicpointandtherelativerotationalvelocitywithrespecttothebasicpoint.4.2Velocityofanypointinaplanarmotion
isverticaltothelinkofABallthetime,sotheprojectionofonABisvanish.Thevelocityprojectiontheorem:thevelocityprojectionsofanytwopointinaplanegraphonthelinelinkingthesetwopointsareidentical.(2)VelocityprojectiontheoremAB4.2Velocityofanypointinaplanarmotiona.Background
Ifapointwhosevelocityiszeroisselectedasthebasicpoint,theprocessoffindingthevelocityofanypointwillbegreatlysimplified.Therefore,itisnaturaltoaskifsuchapointexistsinanyinstant.Ifitdoesexist,howtofindsuchapoint?b.InstantaneouscenterofvelocityAtanyinstant,itmustexistasolepointwhosevelocityiszerointheplanegraphoritsexpandingarea,whichiscalledtheinstantaneousvelocitycenterofthisplanegraphatthisinstant.Foraplanegraph,itsinstantaneousvelocitycenteralwaysexistsuniquely.
(3)Instantaneouscenterofvelocitymethod4.2Velocityofanypointinaplanarmotionc.InstantaneouscenterofvelocitymethodConsideraplanegraph.TheinstantaneousvelocitycenterisP,andtheangularvelocityoftheplanegraphis.SelectinstantaneousvelocitycenterPisabasicpoint,thevelocityofanarbitrarypointAintheplanegraph:4.2Velocityofanypointinaplanarmotiond.MethodstodeterminetheinstantaneousvelocitycenterPA(1)Whenthevelocityofapointandtheangularvelocity
oftheplanegraphareknown,theinstantaneousvelocitycenter(pointP)canbedetermined,
pointPisinthedirectionofthelineformedbyrotatingthethrough90ointhedirectionof
aroundpointA.4.2Velocityofanypointinaplanarmotion(2)Whenaplanegraphrollsalongafixedsurfacewithoutslipping,thecontactpointPbetweenthegraphandthefixedsurfacewillbetheinstantaneousvelocitycenter.
(3)WhenthedirectionsofthevelocitiesattwopointsAandBinagraphareknown,andisnotparallelto,drawlinesfromAandBperpendiculartorespectively,andthecrosspointPofthesetwolineswillbetheinstantaneousvelocitycenter.ABP4.2Velocityofanypointinaplanarmotion(4)WhenthevelocitiesoftwopointsAandBaregivenatanyinstant,and.Therearethreecases:ABP
Whenandpointtothesamedirection,but.DrawtheextensionlineofAB,thelinkinglineoftheendingsofand,thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:◆ω
◆Whenandhaveoppositedirections,drawthelinkinglineoftheendingsofand,andthelineconnectingAB.Thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:
ω4.2VelocityofanypointinaplanarmotionBPAB(5)ThevelocitiesoftwopointsAandBpointtothesamedirectionatanyinstant,,,buttheyarenotperpendiculartolineAB.Inthiscase,theinstantaneousvelocitycenterisindefinitelyfaraway,andtheangularvelocity
=0,i.e.allpointinthefigurehavethesamevelocityatthisinstantoftime.Suchamotioniscalledinstantaneoustranslation,buttheiraccelerationsarenotequal.
When,
theinstantaneousvelocitycenterisindefinitelyfaraway.Theplanegraphhasinstantaneoustranslation,=0,allpointsinthegraphhavethesamevelocityatthisinstantoftime,buttheiraccelerationsarenotequal.◆ω4.2VelocityofanypointinaplanarmotionAABAAttheinstant,theangularvelocityofthegraphis,angularaccelerationis,accelerationofapointAis
.DeterminetheaccelerationofanarbitrarypointBinthegraph.·
4.3
AccelerationofanypointinaplanarmotionBA1.
:
4.3
AccelerationofanypointinaplanarmotionBAB(1)thetangentialacceleration
(2)thenormalacceleration2.
:hastwocomponents:
4.3
AccelerationofanypointinaplanarmotionTheabsoluteaccelerationofpointB:Theorem:
Theaccelerationofanarbitrarypointisequaltothevectorsumofaccelerationofthebasicpoint,thetangentialandnormalaccelerationsoftheplanegraphrotatingaboutthebasicpoint.
4.3
Accelerationofanypointinaplanarmotionω1ⅠⅡO1OABCAnexternaltoothingplanetgearmechanismshowninthefigure.ThelinkingbarO1O=l,rotatesaboutaxisO1withauniformangularvelocityω1.ThebiggergearIIisfixed,theplanetgearIofradiusrrollsalongthegearIIwithoutsliding.AandBaretwopointsontheedgegearI,showninthefigure.Findtheaccelerationsof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版企業(yè)信息工程系統(tǒng)性能評估委托合同3篇
- 2025版學(xué)校學(xué)生食堂餐具清洗消毒服務(wù)合同2篇
- 2025版工業(yè)產(chǎn)品設(shè)計(jì)勞務(wù)分包合同示范文本3篇
- 3簡歷篩選技巧
- 2025版新型木工機(jī)械設(shè)備租賃服務(wù)合同范本4篇
- 全新神州2025年度車輛租賃合同6篇
- 互聯(lián)網(wǎng)平臺未來發(fā)展趨勢與挑戰(zhàn)考核試卷
- 2025版建筑施工安全環(huán)保綜合服務(wù)合同2篇
- 2025版嬰幼兒輔食委托加工生產(chǎn)及質(zhì)量控制合同3篇
- 2025版企業(yè)商標(biāo)注冊委托代理服務(wù)合同2篇
- 數(shù)學(xué)-山東省2025年1月濟(jì)南市高三期末學(xué)習(xí)質(zhì)量檢測濟(jì)南期末試題和答案
- 中儲糧黑龍江分公司社招2025年學(xué)習(xí)資料
- 湖南省長沙市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年林地使用權(quán)轉(zhuǎn)讓協(xié)議書
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 數(shù)字的秘密生活:最有趣的50個(gè)數(shù)學(xué)故事
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)一 移動(dòng)商務(wù)內(nèi)容運(yùn)營關(guān)鍵要素分解
- 基于ADAMS的汽車懸架系統(tǒng)建模與優(yōu)化
- 當(dāng)前中國個(gè)人極端暴力犯罪個(gè)案研究
- 中國象棋比賽規(guī)則
評論
0/150
提交評論