2022-2023學(xué)年江蘇省鹽城市明達(dá)中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2022-2023學(xué)年江蘇省鹽城市明達(dá)中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2022-2023學(xué)年江蘇省鹽城市明達(dá)中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2022-2023學(xué)年江蘇省鹽城市明達(dá)中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2022-2023學(xué)年江蘇省鹽城市明達(dá)中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列正多邊形中,繞其中心旋轉(zhuǎn)72°后,能和自身重合的是()A.正方形 B.正五邊形C.正六邊形 D.正八邊形2.學(xué)校門口的欄桿如圖所示,欄桿從水平位置繞點旋轉(zhuǎn)到位置,已知,,垂足分別為,,,,,則欄桿端應(yīng)下降的垂直距離為()A. B. C. D.3.如圖,AB是⊙O的直徑,C是⊙O上一點(A、B除外),∠BOD=44°,則∠C的度數(shù)是()A.44° B.22° C.46° D.36°4.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.65.已知關(guān)于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根,則a的值是()A.1 B.﹣1 C. D.6.如圖,在矩形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是AO,AD的中點,若AB=6,BC=8,則△AEF的面積是()A.3 B.4 C.5 D.67.如圖,是一個幾何體的三視圖,則這個幾何體是()A.長方體 B.圓柱體 C.球體 D.圓錐體8.圓的面積公式S=πR2中,S與R之間的關(guān)系是()A.S是R的正比例函數(shù) B.S是R的一次函數(shù)C.S是R的二次函數(shù) D.以上答案都不對9.一個圓錐的側(cè)面積是底面積的4倍,則圓錐側(cè)面展開圖的扇形的圓心角是A.60° B.90° C.120° D.180°10.在平面直角坐標(biāo)系中,把拋物線y=2x2繞原點旋轉(zhuǎn)180°,再向右平移1個單位,向下平移2個單位,所得的拋物線的函數(shù)表達(dá)式為()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣2二、填空題(每小題3分,共24分)11.如圖,在邊長為的正方形中,點為靠近點的四等分點,點為中點,將沿翻折得到連接則點到所在直線距離為________________.12.在二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:x-2-101234y72-1-2m27則m的值為_____.13.張華在網(wǎng)上經(jīng)營一家禮品店,春節(jié)期間準(zhǔn)備推出四套禮品進(jìn)行促銷,其中禮品甲45元/套,禮品乙50元/套,禮品丙70元/套,禮品丁80元/套,如果顧客一次購買禮品的總價達(dá)到100元,顧客就少付x元,每筆訂單顧客網(wǎng)上支付成功后,張華會得到支付款的80%.①當(dāng)x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付_________元;②在促銷活動中,為保證張華每筆訂單得到的金額均不低于促銷前總價的六折,則x的最大值為________.14.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為_____.15.如圖,正方形EFGH的四個頂點分別在正方形ABCD的四條邊上,若正方形EFGH與正方形ABCD的相似比為,則()的值為_____.16.關(guān)于的方程一個根是1,則它的另一個根為________.17.如圖,在中,弦,點在上移動,連結(jié),過點作交于點,則的最大值為__________.18.方程(x﹣1)(x﹣3)=0的解為_____.三、解答題(共66分)19.(10分)如圖所示,在中,,,,點由點出發(fā)沿方向向點勻速運動,同時點由點出發(fā)沿方向向點勻速運動,它們的速度均為.連接,設(shè)運動時間為.(1)當(dāng)為何值時,?(2)設(shè)的面積為,求與的函數(shù)關(guān)系式,并求出當(dāng)為何值時,取得最大值?的最大值是多少?20.(6分)如圖,在陽光下的電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米,同一時刻,豎起一根1米高的竹竿MN,其影長MF為1.5米,求電線桿的高度.21.(6分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.(1)從中任意摸出1個球,恰好摸到紅球的概率是;(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.22.(8分)已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(-3,0),(2,-5).(1)試確定此二次函數(shù)的解析式;(2)請你判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?23.(8分)如圖,在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度.(1)畫出關(guān)于軸的對稱圖形;(2)將以為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°得到,畫出旋轉(zhuǎn)后的圖形,并求出旋轉(zhuǎn)過程中線段掃過的扇形面積.24.(8分)已知一次函數(shù)的圖象與二次函數(shù)的圖象相交于和,點是線段上的動點(不與重合),過點作軸,與二次函數(shù)的圖象交于點.(1)求的值;(2)求線段長的最大值;(3)當(dāng)為的等腰直角三角形時,求出此時點的坐標(biāo).25.(10分)計算:(1)sin260°﹣tan30°?cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°26.(10分)如圖,拋物線y=ax2+bx﹣3經(jīng)過點A(2,﹣3),與x軸負(fù)半軸交于點B,與y軸交于點C,且OC=3OB.(1)求拋物線的解析式;(2)拋物線的對稱軸上有一點P,使PB+PC的值最小,求點P的坐標(biāo);(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】選項A,正方形的最小旋轉(zhuǎn)角度為90°,繞其中心旋轉(zhuǎn)90°后,能和自身重合;選項B,正五邊形的最小旋轉(zhuǎn)角度為72°,繞其中心旋轉(zhuǎn)72°后,能和自身重合;選項C,正六邊形的最小旋轉(zhuǎn)角度為60°,繞其中心旋轉(zhuǎn)60°后,能和自身重合;選項D,正八邊形的最小旋轉(zhuǎn)角度為45°,繞其中心旋轉(zhuǎn)45°后,能和自身重合.故選B.2、C【解析】分析:根據(jù)題意得△AOB∽△COD,根據(jù)相似三角形的性質(zhì)可求出CD的長.詳解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故選C.點睛:本題考查了相似三角形的判定與性質(zhì),正確得出△AOB∽△COD是解題關(guān)鍵.3、B【分析】根據(jù)圓周角定理解答即可.【詳解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故選:B.【點睛】本題考查了圓周角定理,屬于基本題型,熟練掌握圓周角定理是關(guān)鍵.4、D【分析】連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.5、B【分析】根據(jù)關(guān)于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根可知△=0,求出a的取值即可.【詳解】解:∵關(guān)于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根,∴△=22+4a=0,解得a=﹣1.故選B.【點睛】本題考查一元二次方程根的判別式,熟記公式正確計算是本題的解題關(guān)鍵.6、A【分析】因為四邊形ABCD是矩形,所以AD=BC=8,∠BAD=90°,,又因為點E,F(xiàn)分別是AO,AD的中點,所以EF為三角形AOD的中位線,推出,,AF:AD=1:2由此即可解決問題.【詳解】解:∵四邊形ABCD是矩形,AB=6,BC=8

∴,∵E,F(xiàn)分別是AO.AD中點,

∴,,AF:AD=1:2,∴△AEF的面積為3,

故選:A.【點睛】本題考查了相似三角形的判定與性質(zhì)、三角形中位線定理、矩形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于基礎(chǔ)題,中考常考題型.7、B【分析】根據(jù)三視圖的規(guī)律解答:主視圖表示由前向后觀察的物體的視圖;左視圖表示在側(cè)面由左向右觀察物體的視圖,俯視圖表示由上向下觀察物體的視圖,由此解答即可.【詳解】解:∵該幾何體的主視圖和左視圖都為長方形,俯視圖為圓∴這個幾何體為圓柱體故答案是:B.【點睛】本題主要考察簡單幾何體的三視圖,熟練掌握簡單幾何體的三視圖是解題的關(guān)鍵.8、C【解析】根據(jù)二次函數(shù)的定義,易得S是R的二次函數(shù),故選C.9、B【解析】試題分析:設(shè)母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側(cè)面面積=πrR,∵側(cè)面積是底面積的4倍,∴4πr2=πrR.∴R=4r.∴底面周長=πR.∵圓錐的底面周長等于它的側(cè)面展開圖的弧長,∴設(shè)圓心角為n°,有,∴n=1.故選B.10、C【分析】拋物線y=1x1繞原點旋轉(zhuǎn)180°,即拋物線上的點(x,y)變?yōu)椋?x,-y),代入可得拋物線方程,然后根據(jù)左加右減的規(guī)律即可得出結(jié)論.【詳解】解:∵把拋物線y=1x1繞原點旋轉(zhuǎn)180°,∴新拋物線解析式為:y=﹣1x1,∵再向右平移1個單位,向下平移1個單位,∴平移后拋物線的解析式為y=﹣1(x﹣1)1﹣1.故選:C.【點睛】本題考查了拋物線的平移變換規(guī)律,旋轉(zhuǎn)變換規(guī)律,掌握拋物線的平移和旋轉(zhuǎn)變換規(guī)律是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】延長交BC于點M,連接FM,延長交DA的延長線于點P,作DN⊥CP,先證明∽,利用相似的性質(zhì)求出,然后證明∽,利用相似的性質(zhì)求出EP,從而得到DP的長,再利用勾股定理求出CP的長,最后利用等面積法計算DN即可.【詳解】如圖,延長交BC于點M,連接FM,延長交DA的延長線于點P,作DN⊥CP,由題可得,,,∴,∵F為AB中點,∴,又∵FM=FM,∴≌(HL),∴,,由折疊可知,,∴,又∵∴,∴∽,∴,∵AD=4,E為四等分點,∴,∴,∴,∴,∵,∴,,∴∽,∴,即,∴EP=6,∴DP=EP+DE=7,在中,,∵,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理以及等面積法等知識,較為綜合,難度較大,重點在于作輔助線構(gòu)造全等或相似三角形.12、-1【分析】二次函數(shù)的圖象具有對稱性,從函數(shù)值來看,函數(shù)值相等的點就是拋物線的對稱點,由此可推出拋物線的對稱軸,根據(jù)對稱性求m的值.【詳解】解:根據(jù)圖表可以得到,點(-2,7)與(4,7)是對稱點,點(-1,2)與(3,2)是對稱點,∴函數(shù)的對稱軸是:x=1,∴橫坐標(biāo)是2的點與(0,-1)是對稱點,∴m=-1.【點睛】正確觀察表格,能夠得到函數(shù)的對稱軸,聯(lián)想到對稱關(guān)系是解題的關(guān)鍵.13、125【分析】①當(dāng)x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付45+80-5=1元.②設(shè)顧客每筆訂單的總價為M元,當(dāng)0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當(dāng)M≥100時,0.8(M-x)≥0.6M,對M≥100恒成立,由此能求出x的最大值.【詳解】解:(1)當(dāng)x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付:45+80-5=1元.故答案為:1.(2)設(shè)顧客一次購買干果的總價為M元,當(dāng)0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當(dāng)M≥100時,0.8(M-x)≥0.6M,解得,0.8x≤0.2M.∵M(jìn)≥100恒成立,∴0.8x≤200解得:x≤25.故答案為25.【點睛】本題考查代數(shù)值的求法,考查函數(shù)性質(zhì)在生產(chǎn)、生活中的實際應(yīng)用等基礎(chǔ)知識,考查運算求解能力和應(yīng)用意識,是中檔題.14、60°【解析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°15、【分析】根據(jù)題意,由AAS證明△AEH≌△BFE,則BE=AH,根據(jù)相似比為,令EH=,AB=,設(shè)AE=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.【詳解】解:在正方形EFGH與正方形ABCD中,∠A=∠B=90°,EF=EH,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF,∴△AEH≌△BFE(AAS),∴BE=AH,∵,令EH=,AB=,在直角三角形AEH中,設(shè)AE=,AH=AB-AE=,由勾股定理,得,即,解得:或,∵,∴,∴,∴;故答案為:.【點睛】本題考查了相似四邊形的性質(zhì),正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是利用勾股定理求出AE和BE的長度.16、1【分析】利用一元二次方程根與系數(shù)的關(guān)系,即可得出答案.【詳解】由一元二次方程根與系數(shù)的關(guān)系可知,∵關(guān)于的方程一個根是1,∴它的另一個根為1,故答案為:1.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,掌握一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.17、2【分析】連接OD,根據(jù)勾股定理求出CD,利用垂線段最短得到當(dāng)OC⊥AB時,OC最小,根據(jù)垂徑定理計算即可;【詳解】如圖,連接OD,∵CD⊥OC,∴∠DCO=,∴,當(dāng)OC的值最小時,CD的值最大,OC⊥AB時,OC最小,此時D、B兩點重合,∴CD=CB=AB=2,即CD的最大值為2;故答案為:2.【點睛】本題主要考查了勾股定理,垂徑定理,掌握勾股定理,垂徑定理是解題的關(guān)鍵.18、x1=3,x2=1【分析】利用因式分解法求解可得.【詳解】解:∵(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得x1=3,x2=1,故答案為:x1=3,x2=1.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.三、解答題(共66分)19、(1)(2)S=?(t?)2+,t=,S有最大值,最大值為.【分析】(1)利用分線段成比例定理構(gòu)建方程即可解決問題.(2)構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.【詳解】(1)∵PQ⊥AC,∴∠AQP=∠C=90°,∴PQ∥BC,∴,在Rt△ACB中,AB=∴,解得t=,∴t為時,PQ⊥AC.(2)如圖,作PH⊥AC于H.∵PH∥BC,∴,∴,∴PH=(5?t),∴S=?AQ?PH=×t×(5?t)=?t2+t=?(t?)2+,∵?<0,∴t=,S有最大值,最大值為.【點睛】本題考查平行線分線段成比例定理,二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.20、電線桿子的高為4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一時刻物高與影長的比一定得到AG的長度,加上GB的長度即為電線桿AB的高度.【詳解】過C點作CG⊥AB于點G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===2,∴AB=AG+GB=2+2=4(米),答:電線桿子的高為4米.【點睛】此題考查了相似三角形的應(yīng)用,構(gòu)造出直角三角形進(jìn)行求解是解決本題的難點;用到的知識點為:同一時刻物高與影長的比一定.21、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次

第一次

紅球1

紅球2

白球

黑球

紅球1

(紅球1,紅球2)

(紅球1,白球)

(紅球1,黑球)

紅球2

(紅球2,紅球1)

(紅球2,白球)

(紅球2,黑球)

白球

(白球,紅球1)

(白球,紅球2)

(白球,黑球)

黑球

(黑球,紅球1)

(黑球,紅球2)

(黑球,白球)

由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計22、(1)y=﹣x2﹣2x+1;(2)點P(﹣2,1)在這個二次函數(shù)的圖象上,【分析】(1)根據(jù)給定點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式即可;

(2)代入x=-2求出y值,將其與1比較后即可得出結(jié)論.【詳解】(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+1;∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),(2,﹣5),則有:解得;∴y=﹣x2﹣2x+1.(2)把x=-2代入函數(shù)得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴點P(﹣2,1)在這個二次函數(shù)的圖象上,【點睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)圖象上點的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)解析式是解題的關(guān)鍵.23、(1)見解析;(2)見解析,【分析】(1)根據(jù)圖形對稱的性質(zhì),關(guān)于軸對稱,相等,互為相反數(shù).(2)根據(jù)扇形的面積S=即可解得.【詳解】解:(1)(2)【點睛】本題考查圖形的對稱,扇形的面積公式.24、(1)1,3;(2)最大值為;(3)【分析】(1)將點分別代入一次函數(shù)解析式可求得b的值,再將點A的坐標(biāo)代入二次函數(shù)可求出a的值;

(2)設(shè),則,根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PC的長關(guān)于m的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)可得答案;

(3)同(2)設(shè)出點P,C的坐標(biāo),根據(jù)題意可用含m的式子表示出AC,PC的長,根據(jù)AC=PC可得關(guān)于m的方程,求得m的值,進(jìn)而求出點P的坐標(biāo).【詳解】解:(1)∵在直線上,∴,∴.又∵在拋物線上,∴,解得.(2)設(shè),則,∴,∴當(dāng)時,有最大值,最大值為.(3)如圖,∵為的等腰三角形且軸,∴連接,軸,∵,∴,.∵,∴,化簡,得,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論