2023-2024學年湖北省武漢市高新區(qū)重點名校中考數(shù)學仿真試卷含解析_第1頁
2023-2024學年湖北省武漢市高新區(qū)重點名校中考數(shù)學仿真試卷含解析_第2頁
2023-2024學年湖北省武漢市高新區(qū)重點名校中考數(shù)學仿真試卷含解析_第3頁
2023-2024學年湖北省武漢市高新區(qū)重點名校中考數(shù)學仿真試卷含解析_第4頁
2023-2024學年湖北省武漢市高新區(qū)重點名校中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省武漢市高新區(qū)重點名校中考數(shù)學仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如果關于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥42.小文同學統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數(shù)為28~35次的人數(shù)最多③有的人每周使用手機支付的次數(shù)在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④3.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣34.已知關于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B. C. D.5.“a是實數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件6.實數(shù)4的倒數(shù)是()A.4 B. C.﹣4 D.﹣7.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定8.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC9.甲、乙兩位同學做中國結,已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結的個數(shù).如果設甲每小時做x個,那么可列方程為()A.= B.=C.= D.=10.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.17二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的方程ax=x+2(a1)的解是________.12.直線y=2x+1經(jīng)過點(0,a),則a=________.13.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結果保留π).14.如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯(lián)結CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.15.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.16.若有意義,則x的取值范圍是.三、解答題(共8題,共72分)17.(8分)如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.18.(8分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.19.(8分)某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數(shù)關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數(shù)關系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?20.(8分)如圖,在△ABC中,點D在邊BC上,聯(lián)結AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.21.(8分)在邊長為1的5×5的方格中,有一個四邊形OABC,以O點為位似中心,作一個四邊形,使得所作四邊形與四邊形OABC位似,且該四邊形的各個頂點都在格點上;求出你所作的四邊形的面積.22.(10分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結EF。甲,乙兩位同學對條件進行分析后,甲得到結論①:“E是BC中點”.乙得到結論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結論是否正確,并說明理由.23.(12分)解方程式:-3=24.如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

由被開方數(shù)非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.2、B【解析】

根據(jù)直方圖表示的意義求得統(tǒng)計的總人數(shù),以及每組的人數(shù)即可判斷.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解.【詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結論錯誤;②每周使用手機支付次數(shù)為28~35次的人數(shù)最多,此結論正確;③每周使用手機支付的次數(shù)在35~42次所占比例為,此結論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結論錯誤;故選:B.【點睛】此題考查直方圖的意義,解題的關鍵在于理解直方圖表示的意義求得統(tǒng)計的數(shù)據(jù)3、C【解析】試題分析:根據(jù)頂點式,即A、C兩個選項的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項考點:二次函數(shù)的頂點式、對稱軸點評:本題考查學生對二次函數(shù)頂點式的掌握,難度較小,二次函數(shù)的頂點式解析式為y=(x-a)2+h,頂點坐標為4、C【解析】

解:∵關于x的一元二次方程有實數(shù)根,∴△==,解得m≥1,故選C.【點睛】本題考查一元二次方程根的判別式.5、A【解析】根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,由a是實數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.6、B【解析】

根據(jù)互為倒數(shù)的兩個數(shù)的乘積是1,求出實數(shù)4的倒數(shù)是多少即可.【詳解】解:實數(shù)4的倒數(shù)是:1÷4=.故選:B.【點睛】此題主要考查了一個數(shù)的倒數(shù)的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數(shù)的兩個數(shù)的乘積是1.7、C【解析】

眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎是偶然現(xiàn)象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調(diào)查就行了,故是錯誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯誤.故選C.【點睛】考核知識點:眾數(shù),中位數(shù),方差.8、C【解析】

解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.9、A【解析】

設甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等即可列方程.【詳解】設甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【點睛】本題考查了分式方程的應用,找到關鍵描述語,正確找出等量關系是解決問題的關鍵.10、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:依據(jù)等式的基本性質依次移項、合并同類項、系數(shù)化為1即可得出答案.詳解:移項,得:ax﹣x=1,合并同類項,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質及解一元一次方程的基本步驟是解題的關鍵.12、1【解析】

根據(jù)一次函數(shù)圖象上的點的坐標特征,將點(0,a)代入直線方程,然后解關于a的方程即可.【詳解】∵直線y=2x+1經(jīng)過點(0,a),∴a=2×0+1,∴a=1.故答案為1.13、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉的性質,扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質,求出陰影部分的面積等于兩個扇形的面積的差是解題的關鍵.14、【解析】

設CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進而得出PE=a2,再根據(jù)△DEP∽△DAB,即可得到,即,可得,即可得到AB的長等于.【詳解】如圖,設CD=AB=a,則BC2=BD2-CD2=1-a2,

由折疊可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的長等于AB=.故答案為.15、1.【解析】

設小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點睛】本題考查了二元一次方程組的應用.16、x≥8【解析】略三、解答題(共8題,共72分)17、(1)詳見解析;(2).【解析】

(1)利用基本作圖(作一個角等于已知角和作已知線段的垂直平分線)作出BD和EF;(2)先證明四邊形BEDF為菱形,再利用含30度的直角三角形三邊的關系求出BF和CD,然后利用菱形的面積公式求解.【詳解】(1)如圖,DE、DF為所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD為∠ABC的角平分線,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四邊形BEDF為平行四邊形,而FB=FD,∴四邊形BEDF為菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四邊形BFDE的面積=4×2=8.故答案為:8.【點睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).18、(1)26°;(2)1.【解析】試題分析:(1)根據(jù)垂徑定理,得到,再根據(jù)圓周角與圓心角的關系,得知∠E=∠O,據(jù)此即可求出∠DEB的度數(shù);(2)由垂徑定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的長.試題解析:(1)∵AB是⊙O的一條弦,OD⊥AB,∴,∴∠DEB=∠AOD=×52°=26°;(2)∵AB是⊙O的一條弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,則AB=2AC=1.考點:垂徑定理;勾股定理;圓周角定理.19、(1);(2);(3)最多獲利4480元.【解析】

(1)銷售量y為200件加增加的件數(shù)(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數(shù)的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據(jù)二次函數(shù)的性質得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【詳解】(1)根據(jù)題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數(shù)關系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數(shù)關系式為:W=﹣20x2+3000x﹣108000;(3)根據(jù)題意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,對稱軸為x=﹣=75,∵a=﹣20<0,∴拋物線開口向下,∴當76≤x≤78時,W隨x的增大而減小,∴x=76時,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商場銷售該品牌童裝獲得的最大利潤是4480元.【點睛】二次函數(shù)的應用.20、見解析【解析】試題分析:(1),,可得∽,從而得,再根據(jù)∠BDF=∠CDA即可證;(2)由∽,可得,從而可得,再由∽,可得從而得,繼而可得,得到.試題解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【點睛】本題考查了相似三角形的性質與判定,能結合圖形以及已知條件靈活選擇恰當?shù)姆椒ㄟM行證明是關鍵.21、(1)如圖所示,見解析;四邊形OA′B′C′即為所求;(2)S四邊形OA′B′C′=1.【解析】

(1)結合網(wǎng)格特點,分別作出點A、B、C關于點O成位似變換的對應點,再順次連接即可得;(2)根據(jù)S四邊形OA′B′C′=S△OA′B′+S△OB′C′計算可得.【詳解】(1)如圖所示,四邊形OA′B′C′即為所求.(2)S四邊形OA′B′C′=S△OA′B′+S△OB′C′=12×4×4+1=8+2=1.【點睛】本題考查了作圖-位似變換:先確定位似中心;再分別連接并延長位似中心和能代表原圖的關鍵點;接著根據(jù)位似比,確定能代表所作的位似圖形的關鍵點;然后順次連接上述各點,得到放大或縮小的圖形.22、①結論一正確,理由見解析;②結論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學的結論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結論②正確;試題解析:甲和乙的結論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點P、Q是線段BD的三等分點,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點E是BC的中點,即結論①正確;(2)和(1)同理可得點F是CD的中點,∴EF∥BD,EF=BD,∴△CE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論