2023-2024學(xué)年云南省遵義市仁懷縣重點中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
2023-2024學(xué)年云南省遵義市仁懷縣重點中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
2023-2024學(xué)年云南省遵義市仁懷縣重點中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
2023-2024學(xué)年云南省遵義市仁懷縣重點中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
2023-2024學(xué)年云南省遵義市仁懷縣重點中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年云南省遵義市仁懷縣重點中學(xué)中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元2.下列二次根式中,最簡二次根式是()A. B. C. D.3.下列因式分解正確的是()A. B.C. D.4.若關(guān)于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥35.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃6.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.7.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當(dāng)x>0時,y隨x的增大而增大 D.當(dāng)x<0時,y隨x的增大而減小8.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形9.把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分周長和是()A. B. C. D.10.實數(shù)a在數(shù)軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定二、填空題(共7小題,每小題3分,滿分21分)11.如圖,數(shù)軸上點A表示的數(shù)為a,化簡:a_____.12.函數(shù)中自變量x的取值范圍是_____;函數(shù)中自變量x的取值范圍是______.13.關(guān)于x的分式方程=2的解為正實數(shù),則實數(shù)a的取值范圍為_____.14.如圖,在3×3的正方形網(wǎng)格中,點A,B,C,D,E,F(xiàn),G都是格點,從C,D,E,F(xiàn),G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.15.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.16.用配方法將方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n為常數(shù)),則m+n=_____.17.百子回歸圖是由1,2,3,…,100無重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19991220”標示澳門回歸日期,最后一行中間兩位“2350”標示澳門面積,…,同時它也是十階幻方,其每行10個數(shù)之和、每列10個數(shù)之和、每條對角線10個數(shù)之和均相等,則這個和為______.百子回歸三、解答題(共7小題,滿分69分)18.(10分)如果a2+2a-1=0,求代數(shù)式的值.19.(5分)某手機經(jīng)銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600元求甲、乙型號手機每部進價為多少元?該店計劃購進甲、乙兩種型號的手機銷售,預(yù)計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280元.為了促銷,公司決定每售出一臺乙型號手機,返還顧客現(xiàn)金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值20.(8分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值21.(10分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=1.求拋物線的函數(shù)表達式.當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.22.(10分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍.設(shè)購進A型無人機x臺,總費用為y元.①求y與x的關(guān)系式;②購進A型、B型無人機各多少臺,才能使總費用最少?23.(12分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關(guān)系;(2)求∠ABD的度數(shù).24.(14分)某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調(diào)查,過程如下,請補充完整.收集數(shù)據(jù):從選擇籃球和排球的學(xué)生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據(jù):按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結(jié)論:(1)如果全校有160人選擇籃球項目,達到優(yōu)秀的人數(shù)約為_________人;(2)初二年級的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個不同的角度說明推斷的合理性)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.2、C【解析】

檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.3、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項中,多項式x2-x+2在實數(shù)范圍內(nèi)不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點睛】本題考查因式分解,解決問題的關(guān)鍵是掌握提公因式法和公式法的方法.4、C【解析】

根據(jù)“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【點睛】考查了解不等式組,根據(jù)求不等式的無解,遵循“大大小小解不了”原則得出是解題關(guān)鍵.5、A【解析】

用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.6、D【解析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.7、C【解析】

由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當(dāng)x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【點睛】本題屬于對反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個象限單調(diào)性的變化8、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.9、D【解析】

根據(jù)題意列出關(guān)系式,去括號合并即可得到結(jié)果.【詳解】解:設(shè)小長方形卡片的長為x,寬為y,根據(jù)題意得:x+2y=a,則圖②中兩塊陰影部分周長和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故選擇:D.【點睛】此題考查了整式的加減,熟練掌握運算法則是解本題的關(guān)鍵.10、C【解析】

根據(jù)數(shù)軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質(zhì)及絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.【詳解】解:根據(jù)數(shù)軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質(zhì)與化簡,以及實數(shù)與數(shù)軸,熟練掌握運算法則是解本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

直接利用二次根式的性質(zhì)以及結(jié)合數(shù)軸得出a的取值范圍進而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點睛】本題主要考查了二次根式的性質(zhì)與化簡,正確得出a的取值范圍是解題的關(guān)鍵.12、x≠2x≥3【解析】

根據(jù)分式的意義和二次根式的意義,分別求解.【詳解】解:根據(jù)分式的意義得2-x≠0,解得x≠2;根據(jù)二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點睛】數(shù)自變量的范圍一般從幾個方面考慮:(1)當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).13、a<2且a≠1【解析】

將a看做已知數(shù),表示出分式方程的解,根據(jù)解為非負數(shù)列出關(guān)于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數(shù),∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.14、.【解析】

找出從C,D,E,F(xiàn),G五個點中任意取一點組成等腰三角形的個數(shù),再根據(jù)概率公式即可得出結(jié)論.【詳解】∵從C,D,E,F(xiàn),G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)與所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關(guān)鍵.15、30°【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BOD=45°,再用∠BOD減去∠AOB即可.【詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.16、1【解析】

方程常數(shù)項移到右邊,兩邊加上25配方得到結(jié)果,求出m與n的值即可.【詳解】解:∵x2+10x-11=0,∴x2+10x=11,則x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案為1.【點睛】此題考查了解一元二次方程-配方法,熟練掌握完全平方公式是解本題的關(guān)鍵.17、505【解析】

根據(jù)已知得:百子回歸圖是由1,2,3…,100無重復(fù)排列而成,先計算總和;又因為一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和=總和÷10,代入求解即可.【詳解】1~100的總和為:=5050,

一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和為:n=5050÷10=505,故答案為505.【點睛】本題是數(shù)字變化類的規(guī)律題,是常考題型;一般思路為:按所描述的規(guī)律從1開始計算,從計算的過程中慢慢發(fā)現(xiàn)規(guī)律,總結(jié)出與每一次計算都符合的規(guī)律,就是最后的答案三、解答題(共7小題,滿分69分)18、1【解析】==1.故答案為1.19、(1)甲種型號手機每部進價為1000元,乙種型號手機每部進價為800元;(2)共有四種方案;(3)當(dāng)m=80時,w始終等于8000,取值與a無關(guān)【解析】

(1)設(shè)甲種型號手機每部進價為x元,乙種型號手機每部進價為y元根據(jù)題意列方程組求出x、y的值即可;(2)設(shè)購進甲種型號手機a部,這購進乙種型號手機(20-a)部,根據(jù)題意列不等式組求出a的取值范圍,根據(jù)a為整數(shù)求出a的值即可明確方案(3)利用利潤=單個利潤數(shù)量,用a表示出利潤W,當(dāng)利潤與a無關(guān)時,(2)中的方案利潤相同,求出m值即可;【詳解】(1)設(shè)甲種型號手機每部進價為x元,乙種型號手機每部進價為y元,,解得,(2)設(shè)購進甲種型號手機a部,這購進乙種型號手機(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a為自然數(shù),∴有a為7、8、9、10共四種方案,(3)甲種型號手機每部利潤為1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,當(dāng)m=80時,w始終等于8000,取值與a無關(guān).【點睛】本題考查了列二元一次方程組解實際問題的運用,根據(jù)題意找出等量關(guān)系列出方程是解題關(guān)鍵.20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】

(1)將P(4,-1)代入,可求出解析式

(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.

(3)觀察圖象可得,當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進行討論即可.【詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當(dāng)-1≤x≤2時,y隨著x的增大而減小當(dāng)x=-1時,y=a+(4a+1)+3=4+5a當(dāng)x=2時,y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時,1-4a≤y≤4+5a;(3)當(dāng)a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時,拋物線上的點可能離x軸最遠分別代入可得,當(dāng)x=0時,y=3當(dāng)x=1時,y=b+4當(dāng)x=-時,y=-+3①當(dāng)一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當(dāng),即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對稱軸在不同的范圍內(nèi),拋物線上的點到x軸距離的最大值的點不同.21、(1);(2)當(dāng)t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【解析】

(1)由點E的坐標設(shè)拋物線的交點式,再把點D的坐標(2,1)代入計算可得;

(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;

(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應(yīng)點是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設(shè)拋物線解析式為,當(dāng)時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數(shù)表達式為;(2)由拋物線的對稱性得,,當(dāng)時,,矩形的周長,,,,當(dāng)時,矩形的周長有最大值,最大值為;(3)如圖,當(dāng)時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及平移變換的性質(zhì)等知識點.22、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據(jù)3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論