2024屆江蘇省淮安市清江浦中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
2024屆江蘇省淮安市清江浦中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
2024屆江蘇省淮安市清江浦中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
2024屆江蘇省淮安市清江浦中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
2024屆江蘇省淮安市清江浦中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省淮安市清江浦中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,嘉淇同學(xué)拿20元錢正在和售貨員對話,且一本筆記本比一支筆貴3元,請你仔細(xì)看圖,1本筆記本和1支筆的單價分別為()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元2.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.3.若一個凸多邊形的內(nèi)角和為720°,則這個多邊形的邊數(shù)為A.4 B.5 C.6 D.74.如果將拋物線向下平移1個單位,那么所得新拋物線的表達(dá)式是A. B. C. D.5.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個6.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或47.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(

)A.30°B.45°C.50°D.60°8.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個停靠點,為使所有的人步行到停靠點的路程之和最小,那么該??奎c的位置應(yīng)設(shè)在()A.點A B.點B C.A,B之間 D.B,C之間9.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.10.方程的解是()A. B. C. D.11.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.12.在平面直角坐標(biāo)系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數(shù)的圖象不經(jīng)過第__________象限.14.若關(guān)于x的一元二次方程x2﹣2x+m=0有實數(shù)根,則m的取值范圍是.15.關(guān)于的方程有增根,則______.16.計算的結(jié)果是__________.17.如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為_____.18.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時間為x分鐘,那么可列出的方程是_____________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當(dāng)∠B=______度時,以O(shè),D,E,C為頂點的四邊形是正方形.20.(6分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設(shè)P(1,n).求直線AB的解析式和點B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標(biāo).21.(6分)為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.22.(8分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.23.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.24.(10分)某中學(xué)為了解八年級學(xué)習(xí)體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A、B、C、D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名.25.(10分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標(biāo)為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標(biāo);(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.26.(12分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.27.(12分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

可設(shè)1本筆記本的單價為x元,1支筆的單價為y元,由題意可得等量關(guān)系:①3本筆記本的費用+2支筆的費用=19元,②1本筆記本的費用﹣1支筆的費用=3元,根據(jù)等量關(guān)系列出方程組,再求解即可.【詳解】設(shè)1本筆記本的單價為x元,1支筆的單價為y元,依題意有:,解得:.故1本筆記本的單價為5元,1支筆的單價為2元.故選A.【點睛】本題考查了二元一次方程組的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系設(shè)出未知數(shù),列出方程組.2、D【解析】

解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項A、B、C的左視圖均為從左往右正方形個數(shù)為2,1,符合題意,選項D的左視圖從左往右正方形個數(shù)為2,1,1,故選D.【點睛】本題考查幾何體的三視圖.3、C【解析】

設(shè)這個多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.4、C【解析】

根據(jù)向下平移,縱坐標(biāo)相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.5、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進(jìn)行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當(dāng)讓AB當(dāng)腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當(dāng)以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.6、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.7、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.

在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準(zhǔn)直角三角形的對應(yīng)邊.8、A【解析】

此題為數(shù)學(xué)知識的應(yīng)用,由題意設(shè)一個停靠點,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當(dāng)在AB之間??繒r,設(shè)??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當(dāng)在BC之間??繒r,設(shè)??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該停靠點的位置應(yīng)設(shè)在點A;故選A.【點睛】此題為數(shù)學(xué)知識的應(yīng)用,考查知識點為兩點之間線段最短.9、B【解析】

比較這些負(fù)數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負(fù)數(shù)大小的比較,解題的關(guān)鍵時負(fù)數(shù)比較大小時,絕對值大的數(shù)反而小.10、D【解析】

按照解分式方程的步驟進(jìn)行計算,注意結(jié)果要檢驗.【詳解】解:經(jīng)檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結(jié)果要檢驗.11、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質(zhì),證明△ABF≌△CDE是關(guān)鍵.12、C【解析】:∵點的橫縱坐標(biāo)均為負(fù)數(shù),∴點(-1,-2)所在的象限是第三象限,故選C二、填空題:(本大題共6個小題,每小題4分,共24分.)13、三.【解析】

先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過的象限,進(jìn)而可得出結(jié)論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故答案為:三.【點睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當(dāng),時,函數(shù)圖象經(jīng)過一、二、四象限.14、m≤1.【解析】試題分析:由題意知,△=4﹣4m≥0,∴m≤1.故答案為m≤1.考點:根的判別式.15、-1【解析】根據(jù)分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點睛:此題主要考查了分式方程的增根問題,解題關(guān)鍵是明確增根出現(xiàn)的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數(shù).16、1【解析】分析:利用同分母分式的減法法則計算,分子整理后分解因式,約分即可得到結(jié)果.詳解:原式故答案為:1.點睛:本題考查了分式的加減運算,分式的加減運算關(guān)鍵是通分,通分的關(guān)鍵是找最簡公分母.17、【解析】分析:首先求得每一次轉(zhuǎn)動的路線的長,發(fā)現(xiàn)每4次循環(huán),找到規(guī)律然后計算即可.詳解:∵AB=4,BC=3,∴AC=BD=5,轉(zhuǎn)動一次A的路線長是:轉(zhuǎn)動第二次的路線長是:轉(zhuǎn)動第三次的路線長是:轉(zhuǎn)動第四次的路線長是:0,以此類推,每四次循環(huán),故頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:∵2017÷4=504…1,∴頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:故答案為點睛:考查旋轉(zhuǎn)的性質(zhì)和弧長公式,熟記弧長公式是解題的關(guān)鍵.18、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達(dá)出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)①3;②1.【解析】

(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結(jié)論;(2)①由含30°角的直角三角形的性質(zhì)得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質(zhì)即可得出DE;②由等腰三角形的性質(zhì),得到∠ODA=∠A=1°,于是∠DOC=90°然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結(jié)論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當(dāng)∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點睛】本題考查了圓的切線性質(zhì)、解直角三角形的知識、切線長定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.20、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點C作CF⊥x軸于點F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點C的坐標(biāo)是(3,4)或(5,2)或(3,2).考點:一次函數(shù)綜合題.21、(1)平均數(shù)為800升,中位數(shù)為800升;(2)12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到?jīng)_廁所,采用以上建議,一個月估計可以節(jié)約用水3000升.【解析】試題分析:(1)根據(jù)平均數(shù)和中位數(shù)的定義求解可得;(2)用洗衣服的水量除以第3天的用水總量即可得;(3)根據(jù)條形圖給出合理建議均可,如:將洗衣服的水留到?jīng)_廁所.試題解析:解:(1)這7天內(nèi)小申家每天用水量的平均數(shù)為(815+780+800+785+790+825+805)÷7=800(升),將這7天的用水量從小到大重新排列為:780、785、790、800、805、815、825,∴用水量的中位數(shù)為800升;(2)×100%=12.5%.答:第3天小申家洗衣服的水占這一天總用水量的百分比為12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到?jīng)_廁所,采用以上建議,每天可節(jié)約用水100升,一個月估計可以節(jié)約用水100×30=3000升.22、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據(jù)垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設(shè)垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,屬于中考常考題型.23、(1)∠AED=∠C,理由見解析;(2)【解析】

(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進(jìn)行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.24、(1)50名;(2)16名;見解析;(3)56名.【解析】試題分析:根據(jù)A等級的人數(shù)和百分比求出總?cè)藬?shù);根據(jù)總?cè)藬?shù)和A、B、D三個等級的人數(shù)求出C等級的人數(shù);利用總?cè)藬?shù)乘以D等級人數(shù)的百分比得出答案.試題解析:(1)10÷20%=50(名)答:本次抽樣共抽取了50名學(xué)生.(2)50-10-20-4=16(名)答:測試結(jié)果為C等級的學(xué)生有16名.補全圖形如圖所示:(3)700×(4÷50)=56(名)答:估計該中學(xué)八年級700名學(xué)生中體能測試為D等級的學(xué)生有56名.考點:統(tǒng)計圖.25、(1)25π;(2)點B的坐標(biāo)為或;(3)m≤-5或m≥2【解析】

(1)根據(jù)勾股定理,可得AB的長,根據(jù)圓的面積公式,可得答案;(2)根據(jù)確定圓,可得l與⊙A相切,根據(jù)圓的面積,可得AB的長為3,根據(jù)等腰直角三角形的性質(zhì),可得,可得答案;(3)根據(jù)圓心與直線垂直時圓心到直線的距離最短,根據(jù)確定圓的面積,可得PB的長,再根據(jù)30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標(biāo)為(?1,0),B的坐標(biāo)為(3,3),∴AB==5,根據(jù)題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,∴AB⊥CD,∠DCA=45°.,①當(dāng)b>0時,則點B在第二象限.過點B作BE⊥x軸于點E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②當(dāng)b<0時,則點B'在第四象限.同理可得.綜上所述,點B的坐標(biāo)為或.(3)如圖2,,直線當(dāng)y=0時,x=3,即C(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論