版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter3.RandomVariablesandProbabilityDistribution
ConceptofaRandomVariable
Example:threeelectroniccomponentsaretested
samplespace(N:nondefective,D:defective)
S={NNN,NND,NDN,DNN,NDD,DND,DDN,DDD}
allocateanumericaldescriptionofeachoutcome
concernedwiththenumberofdefectives
eachpointinthesamplespacewillbeassignedanumericalvalueof0,1,2,or3.
randomvariableX:thenumberofdefectiveitems,arandomquantity
randomvariable
Definition3.1
Arandomvariableisafunctionthatassociatesarealnumberwitheachelementinthesamplespace.
X:arandomvariable
x:oneofitsvalues
EachpossiblevalueofXrepresentsaneventthatisasubsetofthesamplespace
electroniccomponenttest:
E={DDN,DND,NDD}={X=2}.
Example3.1Twoballsaredrawninsuccessionwithoutreplacementfromanurncontaining4redballsand3blackballs.Yisthenumberofredballs.ThepossibleoutcomesandthevaluesyoftherandomvariableY?
Example3.2Astockroomclerkreturnsthreesafetyhelmetsatrandomtothreesteelmillemployeeswhohadpreviouslycheckedthem.IfSmith,Jones,andBrown,inthatorder,receiveoneofthethreehats,listthesamplepointsforthepossibleordersofreturningthehelmets,andfindthevaluemoftherandomvariableMthatrepresentsthenumberofcorrectmatches.
ThesamplespacecontainsafinitenumberofelementsinExample3.1and3.2.
anotherexample:adieisthrownuntila5occurs,
F:theoccurrenceofa5
N:thenonoccurrenceofa5
obtainasamplespacewithanunendingsequenceofelements
S={F,NF,NNF,NNNF,...}
thenumberofelementscanbeequatedtothenumberofwholenumbers;canbecounted
Definition3.2Ifasamplespacecontainsafinitenumberofpossibilitiesoranunendingsequencewithasmanyelementsastherearewholenumbers,itiscalledadiscretesamplespace.
Theoutcomesofsomestatisticalexperimentsmaybeneitherfinitenorcountable.
example:measurethedistancesthatacertainmakeofautomobilewilltraveloveraprescribedtestcourseon5litersofgasoline
distance:avariablemeasuredtoanydegreeofaccuracy
wehaveinfinitenumberofpossibledistancesinthesamplespace,cannotbeequatedtothenumberofwholenumbers.
Definition3.3
Ifasamplespacecontainsaninfinitenumberofpossibilitiesequaltothenumberofpointsonalinesegment,itiscalledacontinuoussamplespace
Arandomvariableiscalledadiscreterandomvariableifitssetofpossibleoutcomesiscountable.
YinExample3.1andMinExample3.2arediscreterandomvariables.
Whenarandomvariablecantakeonvaluesonacontinuousscale,itiscalledacontinuousrandomvariable.
Themeasureddistancethatacertainmakeofautomobilewilltraveloveratestcourseon5litersofgasolineisacontinuousrandomvariable.
continuousrandomvariablesrepresentmeasureddata:
allpossibleheights,weights,temperatures,distance,orlifeperiods.
discreterandomvariablesrepresentcountdata:thenumberofdefectivesinasampleofkitems,orthenumberofhighwayfatalitiesperyearinagivenstate.
2.DiscreteProbabilityDistribution
Adiscreterandomvariableassumeseachofitsvalueswithacertainprobability
assumeequalweightsfortheelementsinExample3.2,what'stheprobabilitythatnoemployeegetsbackhisrighthelmet.
TheprobabilitythatMassumedthevaluezerois1/3.
ThepossiblevaluesmofMandtheirprobabilitiesare
013
1/31/21/6
ProbabilityMassFunction
ItisconvenienttorepresentalltheprobabilitiesofarandomvariableXbyaformula.
writep(x)=P(X=x)
Thesetoforderedpairs(x,p(x))iscalledtheprobabilityfunctionorprobabilitydistributionofthediscreterandomvariableX.
Definition3.4
Thesetoforderedpairs(x,p(x))isaprobabilityfunction,probabilitymassfunction,orprobabilitydistributionofthediscreterandomvariableXif,foreachpossibleoutcomex
Example3.3Ashipmentof8similarmicrocomputerstoaretailoutletcontains3thataredefective.Ifaschoolmakesarandompurchaseof2ofthesecomputers,findtheprobabilitydistributionforthenumberofdefectives.
Solution
X:thepossiblenumbersofdefectivecomputers
xcanbeanyofthenumbers0,1,and2.
CumulativeFunction
TherearemanyproblemwherewemaywishtocomputetheprobabilitythattheobservedvalueofarandomvariableXwillbelessthanorequaltosomerealnumberx.
WritingF(x)=P(X≤x)foreveryrealnumberx.
Definition3.5
ThecumulativedistributionF(x)ofadiscreterandomvariableXwithprobabilitydistributionp(x)is
FortherandomvariableM,thenumberofcorrectmatchesinExample3.2,wehave
ThecumulativedistributionofMis
Remark.thecumulativedistributionisdefinednotonlyforthevaluesassumedbygivenrandomvariablebutforallrealnumbers.
Example3.5TheprobabilitydistributionofXis
FindthecumulativedistributionoftherandomvariableX.
Certainprobabilitydistributionareapplicabletomorethanonephysicalsituation.
TheprobabilitydistributionofExample3.5canapplytodifferentexperimentalsituations.
Example1:thedistributionofY,thenumberofheadswhenacoinistossed4times
Example2:thedistributionofW,thenumberofreadcardsthatoccurwhen4cardsaredrawnatrandomfromadeckinsuccessionwitheachcardreplacedandthedeckshuffledbeforethenextdrawing.
graphs
Itishelpfultolookataprobabilitydistributioningraphicform.
barchart;
histogram;
cumulativedistribution.
ContinuousProbabilityDistribution
ContinuousProbabilitydistribution
Acontinuousrandomvariablehasaprobabilityofzeroofassumingexactlyanyofitsvalues.Consequently,itsprobabilitydistributioncannotbegivenintabularform.
Example:theheightsofallpeopleover21yearsofage(randomvariable)
Between163.5and164.5centimeters,oreven163.99and164.01centimeters,thereareaninfinitenumberofheights,oneofwhichis164centimeters.
Theprobabilityofselectingapersonatrandomwhoisexactly164centimeterstallandnotoneoftheinfinitelylargesetofheightssocloseto164centimetersisremote.
Weassignaprobabilityofzerotoapoint,butthisisnotthecaseforaninterval.Wewilldealwithanintervalratherthanapointvalue,suchasP(a<X<b),P(W≥c).
P(a≤X≤b)=P(a<X≤b)=P(a≤X<b)=P(a<X<b)
whereXiscontinuous.Itdoesnotmatterwhetherweincludeanendpointoftheintervalornot.ThisisnottruewhenXisdiscrete.
Althoughtheprobabilitydistributionofacontinuousrandomvariablecannotbepresentedintabularform,itcanbestatedasaformula.
refertohistogram
Definition3.6Thefunctionf(x)isaprobabilitydensityfunctionforthecontinuousrandomvariableX,definedoverthesetofrealnumbersR,if
Example3.6Supposethattheerrorinthereactiontemperature,inoC,foracontrolledlaboratoryexperimentisacontinuousrandomvariableXhavingtheprobabilitydensityfunction
(a)Verifycondition2ofDefinition3.6.
(b)FindP(0<X≤1).
Solution:......P(0<X≤1)=1/9.
Definition3.7ThecumulativedistributionF(x)ofacontinuousrandomvariableXwithdensityfunctionf(x)is
immediateconsequence:
Example3.7ForthedensityfunctionofExample3.6find
F(x),anduseittoevaluateP(0<x≤1).
4.JointProbabilityDistributions
theprecedingsections:one-dimensionalsamplespacesandasinglerandomvariable
situations:desirabletorecordthesimultaneousoutcomesofseveralrandomvariables.
JointProbabilityDistribution
Examples
1.wemightmeasuretheamountofprecipitatePandvolumeVofgasreleasedfromacontrolledchemicalexperiment;wegetatwo-dimensionalsamplespaceconsistingoftheoutcomes(p,v).
2.Inastudytodeterminethelikelihoodofsuccessincollege,basedonhighschooldata,onemightuseathree-dimensionalsamplespaceandrecordforeachindividualhisorheraptitudetestscore,highschoolrankinclass,andgrade-pointaverageattheendofthefreshmanyearincollege.
XandYaretwodiscreterandomvariables,thejointprobabilitydistributionofXandYis
p(x,y)=P(X=x,Y=y)
thevaluesp(x,y)givetheprobabilitythatoutcomesxandyoccuratthesametime.
Definition3.8Thefunctionp(x,y)isajointprobabilitydistributionorprobabilitymassfunctionofthediscreterandomvariablesXandYif
Example3.8
Tworefillsforaballpointpenareselectedatrandomfromaboxthatcontains3bluerefills,2redrefills,and3greenrefills.IfXisthenumberofbluerefillsandYisthenumberofredrefillsselected,find
(a)thejointprobabilityfunctionp(x,y)
(b)P[(X,Y)∈A]whereAistheregion{(x,y)|x+y≤1}
Solution
thepossiblepairsofvalues(x,y)are(0,0),(0,1),(1,0),(1,1),(0,2),and(2,0).
p(x,y)representstheprobabilitythatxblueandyredrefillsareselected.
(b)P[(X,Y)∈A]=9/14
presenttheresultsinTable3.1
Definition3.9Thefunctionf(x,y)isajointdensityfunctionofthecontinuousrandomvariablesXandYif
WhenXandYarecontinuousrandomvariables,thejointdensityfunctionf(x,y)isasurfacelyingabovethexyplane.
P[(X,Y)∈A],whereAisanyregioninthexyplane,isequaltothevolumeoftherightcylinderboundedbythebaseAandthesurface.
Example3.9Supposethatthejointdensityfunctionis
(b)P[(X,Y)∈A]=13/160
marginaldistribution
p(x,y):thejointprobabilitydistributionofthediscreterandomvariablesXandY
theprobabilitydistributionpX(x)ofXaloneisobtainedbysummingp(x,y)overthevaluesofY.
Similarly,theprobabilitydistributionpY(y)ofYaloneisobtainedbysummingp(x,y)overthevaluesofX.
pX(x)andpY(y):marginaldistributionsofXandY
WhenXandYarecontinuousrandomvariables,summationsarereplacedbyintegrals.
Definition3.10ThemarginaldistributionofXaloneandofYaloneare
Example3.10ShowthatthecolumnandrowtotalsofTable
3.1givethemarginaldistributionofXaloneandofYalone.
Example3.11Findmarginalprobabilitydensityfunctions
fX(x)andfy(y)forthejointdensityfunctionofExample3.9.
ThemarginaldistributionpX(x)[orfX(x)]andpx(y)[orfy(y)]areindeedtheprobabilitydistributionoftheindividualvariableXandY,respectively.
Howtoverify?
TheconditionsofDefinition3.4[orDefinition3.6]aresatisfied.
Conditionaldistribution
recallthedefinitionofconditionalprobability:
XandYarediscreterandomvariables,wehave
Thevaluexoftherandomvariablerepresentaneventthatisasubsetofthesamplespace.
Definition3.11
LetXandYbetwodiscreterandomvariables.TheconditionalprobabilitymassfunctionoftherandomvariableY,giventhatX=x,is
Similarly,theconditionalprobabilitymassfunctionoftherandomvariableX,giventhatY=y,is
Definition3.11'
LetXandYbetwocontinuousrandomvariables.TheconditionalprobabilitydensityfunctionoftherandomvariableY,giventhatX=x,is
Similarly,theconditionalprobabilitydensityfunctionoftherandomvariableX,giventhatY=y,is
Remark:
Thefunctionf(x,y)/fX(x)isstrictlyafunctionofywithxfixed,thefunctionf(x,y)/fy(y)isstrictlyafunctionofxwithyfixed,bothsatisfyalltheconditionsofaprobabilitydistribution.
HowtofindtheprobabilitythattherandomvariableXfallsbetweenaandbwhenitisknownthatY=y
Example3.12ReferringtoExample3.8,findtheconditionaldistributionofX,giventhatY=1,anduseittodetermine
P(X=0|Y=1).
Example3.13Thejointdensityfortherandomvariables(X,Y)whereXistheunittemperaturechangeandYistheproportionofspectrumshiftthatacertainatomicparticleproducesis
FindthemarginaldensitiesfX(x),fy(y),andtheconditionaldensityfYX(y|x)
(b)Findtheprobabilitythatthespectrumshiftsmorethanhalfofthetotalobservations,giventhetemperatureisincreasedto0.25unit.
(a)
(b)
Example3.14Giventhejointdensityfunction
(a)
(b)
statisticalindependence
eventsAandBareindependent,if
P(B∩A)=P(A)P(B).
discreterandomvariablesXandYareindependent,if
P(X=x,Y=y)=P(X=x)P(Y=y)
forall(x,y)withintheirrange.
Thevaluexoftherandomvariablerepresentaneventthatisasubsetofthesamplespace.
Definition3.12LetXandYbetwodiscreterandomvariables,withjointprobabilitydistributionp(x,y)andmarginaldistributionspX(x)andpY(y),respectively.TherandomvariablesXandYaresaidtobestatisticallyindependentifandonlyif
p(x,y)=pX(x)pY(y)forall(x,y)withintheirrange.
Definition3.12'LetXandYbetwocontinuousrandomvariables,withjointprobabilitydistributionf(x,y)andmarginaldistributionsfX(x)andfY(y),respectively.TherandomvariablesXan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滾槽課程設(shè)計
- 2024年人民版九年級科學(xué)下冊階段測試試卷705
- 2024年岳麓版必修2化學(xué)下冊階段測試試卷691
- 2022-2023年廣東省深圳市福田區(qū)六年級上冊語文期末試卷及答案
- 2024年浙科版四年級數(shù)學(xué)下冊月考試卷566
- 2024年湘師大新版八年級生物下冊階段測試試卷952
- 2024年蘇教新版七年級化學(xué)下冊階段測試試卷388
- 2024年人教版PEP八年級科學(xué)下冊階段測試試卷含答案492
- 2024年中圖版選修1生物上冊月考試卷273
- 2024年新科版八年級科學(xué)上冊月考試卷680
- 剛曉觀所緣緣論略講
- 雙橋靜力觸探分層統(tǒng)計及承載力表0421
- 形勢任務(wù)教育宣講材料第一講——講上情
- 八卦五行-PPT課件
- ISO8573-2測定懸浮狀油含量的試驗方法學(xué)習(xí)資料
- 中國地質(zhì)大學(xué)(武漢)教育發(fā)展基金會籌備成立情況報告
- 薪酬管理試卷及答案
- 大學(xué)無機及分析化學(xué)----氣體練習(xí)題及答案
- 保險行業(yè)新會計準則實施指南征求意見稿
- 形式發(fā)票模板 PI模板 英文版
- 初一的最美的風(fēng)景高分的作文600字
評論
0/150
提交評論