2022年廣西柳州市柳林中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2022年廣西柳州市柳林中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2022年廣西柳州市柳林中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2022年廣西柳州市柳林中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2022年廣西柳州市柳林中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個圓錐的底面直徑是8cm,母線長為9cm,則圓錐的全面積為()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm22.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣23.下列事件是必然事件的是()A.3個人分成兩組,并且每組必有人,一定有2個人分在一組B.拋一枚硬幣,正面朝上C.隨意擲兩個均勻的骰子,朝上面的點數(shù)之和為6D.打開電視,正在播放動畫片4.在0,1,2三個數(shù)中任取兩個,組成兩位數(shù),則在組成的兩位數(shù)中是奇數(shù)的概率為()A. B. C. D.5.在學(xué)校組織的實踐活動中,小新同學(xué)用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側(cè)面積是()A.4π B.1π C.π D.2π6.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A.6B.C.9D.7.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且∠D=40°,則∠PCA等于()A.50° B.60° C.65° D.75°8.如果一個正多邊形的中心角為60°,那么這個正多邊形的邊數(shù)是()A.4 B.5 C.6 D.79.已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是A.①②③ B.②③④ C.①③④ D.①②④10.下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個圖形一共有2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,…,則第⑦個圖形中五角星的個數(shù)為()A.90 B.94 C.98 D.10211.如圖,從一塊直徑為的圓形鐵皮上剪出一個圓心角為90°的扇形.則此扇形的面積為()A. B. C. D.12.如圖,已知,是的中點,且矩形與矩形相似,則長為()A.5 B. C. D.6二、填空題(每題4分,共24分)13.如上圖,四邊形中,,點在軸上,雙曲線過點,交于點,連接.若,,則的值為______.14.在△ABC中,∠C=90°,BC=2,,則邊AC的長是.15.設(shè)分別為一元二次方程的兩個實數(shù)根,則____.16.若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實數(shù)根,則整數(shù)a的最大值為______.17.如果等腰△ABC中,,,那么______.18.已知Rt△ABC中,AC=3,BC=4,以C為圓心,以r為半徑作圓.若此圓與線段AB只有一個交點,則r的取值范圍為_____.三、解答題(共78分)19.(8分)如圖,矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā),以每秒一個單位的速度沿A→B→C的方向運動;同時點Q從點B出發(fā),以每秒2個單位的速度沿B→C→D的方向運動,當(dāng)其中一點到達終點后兩點都停止運動.設(shè)兩點運動的時間為t秒.(1)當(dāng)t=時,兩點停止運動;(2)設(shè)△BPQ的面積面積為S(平方單位)①求S與t之間的函數(shù)關(guān)系式;②求t為何值時,△BPQ面積最大,最大面積是多少?20.(8分)已知,二次函數(shù)的圖象,如圖所示,解決下列問題:(1)關(guān)于的一元二次方程的解為;(2)求出拋物線的解析式;(3)為何值時.21.(8分)(x2+y22.(10分)如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點為點A(3,0)和點B,與y軸交于點C(0,3),連接AC.(1)求這個二次函數(shù)的解析式;(2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點D,使得△ACD的面積最大?若存在,求出點D的坐標(biāo)及△ACD面積的最大值,若不存在,請說明理由.(3)在拋物線上是否存在點E,使得△ACE是以AC為直角邊的直角三角形如果存在,請直接寫出點E的坐標(biāo)即可;如果不存在,請說明理由.23.(10分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=12,AD=BD=10.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.24.(10分)已知二次函數(shù)y=ax2+bx﹣16的圖象經(jīng)過點(﹣2,﹣40)和點(6,8).(1)求這個二次函數(shù)圖象與x軸的交點坐標(biāo);(2)當(dāng)y>0時,直接寫出自變量x的取值范圍.25.(12分)一只不透明的袋子中,裝有2個白球,1個紅球,1個黃球,這些球除顏色外都相同.請用列表法或畫樹形圖法求下列事件的概率:(1)攪勻后從中任意摸出1個球,恰好是白球.(2)攪勻后從中任意摸出2個球,2個都是白球.(3)再放入幾個除顏色外都相同的黑球,攪勻后從中任意摸出1個球,恰好是黑球的概率為,求放入了幾個黑球?26.如圖,某數(shù)學(xué)興趣小組為測量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角為,此時教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達B處,又測得教學(xué)樓頂端G的仰角為,點A、B、C三點在同一水平線上.(1)求古樹BH的高;(2)求教學(xué)樓CG的高.

參考答案一、選擇題(每題4分,共48分)1、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算出圓錐的側(cè)面積,然后計算側(cè)面積與底面積的和.【詳解】解:圓錐的全面積=π×42+×2π×4×9=52π(cm2).故選:B.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.2、D【解析】x2=4,x=±2.故選D.點睛:本題利用方程左右兩邊直接開平方求解.3、A【分析】根據(jù)必然事件是指在一定條件下,一定發(fā)生的事件,對每一選項判斷即可.【詳解】解:A、3個人分成兩組,并且每組必有人,一定有2個人分在一組是必然事件,符合題意,故選A;B、拋一枚硬幣,正面朝上是隨機事件,故不符合題意,B選項錯誤;C、隨意擲兩個均勻的骰子,朝上面的點數(shù)之和為6是隨機事件,故不符合題意,C選項錯誤;D、打開電視,正在播放動畫片是隨機事件,故不符合題意,D選項錯誤;故答案選擇D.【點睛】本題考查的是事件的分類,事件分為必然事件,隨機事件和不可能事件,掌握概念是解題的關(guān)鍵.4、A【分析】列舉出所有情況,看兩位數(shù)中是奇數(shù)的情況占總情況的多少即可.【詳解】解:在0,1,2三個數(shù)中任取兩個,組成兩位數(shù)有:12,10,21,20四個,是奇數(shù)只有21,所以組成的兩位數(shù)中是奇數(shù)的概率為.故選A.【點睛】數(shù)目較少,可用列舉法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、B【分析】根據(jù)圓錐的側(cè)面積,代入數(shù)進行計算即可.【詳解】解:圓錐的側(cè)面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關(guān)鍵.6、C【解析】試題分析:如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2考點:切線的性質(zhì);最值問題.7、C【分析】根據(jù)切線的性質(zhì),由PD切⊙O于點C得到∠OCD=90°,再利互余計算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根據(jù)三角形外角性質(zhì)計算∠PCA的度數(shù).【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故選C.【點睛】本題考查了切線的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、三角形外角性質(zhì)等知識;熟練掌握切線的性質(zhì)與三角形外角性質(zhì)是解題的關(guān)鍵.8、C【解析】試題解析:這個多邊形的邊數(shù)為:故選C.9、D【分析】利用全等三角形的性質(zhì)條件勾股定理求出的長,再利用相似三角形的性質(zhì)求出△BMF的面積即可【詳解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正確∵BC=CD=AD=4,EC=1∴DE=3,設(shè)BF=x,則EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正確,③錯誤,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正確,故選D.【點睛】本題考查旋轉(zhuǎn)變換、正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考選擇題中的壓軸題10、C【分析】根據(jù)前三個圖形可得到第n個圖形一共有個五角星,當(dāng)n=7代入計算即可.【詳解】解:第①個圖形一共有個五角星;第②個圖形一共有個五角星;第③個圖形一共有個五角星;……第n個圖形一共有個五角星,所以第⑦個圖形一共有個五角星.故答案選C.【點睛】本題主要考查規(guī)律探索,解題的關(guān)鍵是找準(zhǔn)規(guī)律.11、A【解析】分析:連接AC,根據(jù)圓周角定理得出AC為圓的直徑,解直角三角形求出AB,根據(jù)扇形面積公式求出即可.詳解:連接AC.∵從一塊直徑為2m的圓形鐵皮上剪出一個同心角為90°的扇形,即∠ABC=90°,∴AC為直徑,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴陰影部分的面積是=(m2).故選A.點睛:本題考查了圓周角定理和扇形的面積計算,能熟記扇形的面積公式是解答此題的關(guān)鍵.12、B【分析】根據(jù)相似多邊形的性質(zhì)列出比例式,計算即可.【詳解】解:∵矩形ABDC與矩形ACFE相似,∴,∵,是的中點,∴AE=5∴,解得,AC=5,故選B.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的對應(yīng)邊的比相等是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、6【分析】如圖,過點F作交OA于點G,由可得OA、BF與OG的關(guān)系,設(shè),則,結(jié)合可得點B的坐標(biāo),將點E、點F代入中即可求出k值.【詳解】解:如圖,過點F作交OA于點G,則設(shè),則,即雙曲線過點,點化簡得,即解得,即.故答案為:6.【點睛】本題主要考查了反比例函數(shù)的圖像,靈活利用坐標(biāo)表示線段長和三角形面積是解題的關(guān)鍵.14、.【詳解】解:∵BC=2,∴AB==3∴AC=故答案為:.15、-2025【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可得出,,將其代入中即可求出結(jié)論.【詳解】解:,分別為一元二次方程的兩個實數(shù)根,,,則.故答案為:.【點睛】本題考查了根與系數(shù)的關(guān)系,根據(jù)一元二次方程根與系數(shù)的關(guān)系得出,是解題的關(guān)鍵.16、1【解析】試題分析:根據(jù)一元二次方程的根的判別式,直接可求△===4-8a+8≥0,解得a≤,因此a的最大整數(shù)解為1.故答案為1.點睛:此題主要考查了一元二次方程根的判別式△=b2-4ac,解題關(guān)鍵是確定a、b、c的值,再求出判別式的結(jié)果.可根據(jù)下面的理由:(1)當(dāng)△>0時,方程有兩個不相等的實數(shù)根;(2)當(dāng)△=0時,方程有兩個相等的實數(shù)根;(3)當(dāng)△<0時,方程沒有實數(shù)根.17、;【分析】過點作于點,過點作于點,由于,所以,,根據(jù)勾股定理以及銳角三角函數(shù)的定義可求出的長度.【詳解】解:過點作于點,過點作于點,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案為:.【點睛】本題考查解直角三角形,涉及銳角三角函數(shù)的定義,需要學(xué)生靈活運用所學(xué)知識.18、3<r≤1或r=.【解析】根據(jù)直線與圓的位置關(guān)系得出相切時有一交點,再結(jié)合圖形得出另一種有一個交點的情況,即可得出答案.【詳解】解:過點C作CD⊥AB于點D,∵AC=3,BC=1.∴AB=5,如果以點C為圓心,r為半徑的圓與斜邊AB只有一個公共點,當(dāng)直線與圓相切時,d=r,圓與斜邊AB只有一個公共點,∴CD×AB=AC×BC,∴CD=r=,當(dāng)直線與圓如圖所示也可以有一個交點,∴3<r≤1,故答案為3<r≤1或r=.【點睛】此題主要考查了直線與圓的位置關(guān)系,結(jié)合題意畫出符合題意的圖形,從而得出答案,此題比較容易漏解.三、解答題(共78分)19、(1)1;(2)①當(dāng)0<t<4時,S=﹣t2+6t,當(dāng)4≤t<6時,S=﹣4t+2,當(dāng)6<t≤1時,S=t2﹣10t+2,②t=3時,△PBQ的面積最大,最大值為3【分析】(1)求出點Q的運動時間即可判斷.(2)①的三個時間段分別求出△PBQ的面積即可.②利用①中結(jié)論,求出各個時間段的面積的最大值即可判斷.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案為1.(2)①當(dāng)0<t<4時,S=?(6﹣t)×2t=﹣t2+6t.當(dāng)4≤t<6時,S=?(6﹣t)×8=﹣4t+2.當(dāng)6<t≤1時,S=(t﹣6)?(2t﹣8)=t2﹣10t+2.②當(dāng)0<t<4時,S=?(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3時,△PBQ的面積最大,最小值為3.當(dāng)4≤t<6時,S=?(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4時,△PBQ的面積最大,最大值為8,當(dāng)6<t≤1時,S=(t﹣6)?(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1時,△PBQ的面積最大,最大值為3,綜上所述,t=3時,△PBQ的面積最大,最大值為3.【點睛】本題主要考查了二次函數(shù)在幾何圖形中的應(yīng)用,涉及了分類討論的數(shù)學(xué)思想,靈活的利用二次函數(shù)的性質(zhì)求三角形面積的最大值是解題的關(guān)鍵.20、(1)-1或2;(2)拋物線解析式為y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接觀察圖象,拋物線與x軸交于-1,2兩點,所以方程的解為x1=-1,x2=2.

(2)設(shè)出拋物線的頂點坐標(biāo)形式,代入坐標(biāo)(2,0),即可求得拋物線的解析式.

(2)若y<0,則函數(shù)的圖象在x軸的下方,找到對應(yīng)的自變量取值范圍即可.【詳解】解:(1)觀察圖象可看對稱軸出拋物線與x軸交于x=-1和x=2兩點,

∴方程的解為x1=-1,x2=2,

故答案為:-1或2;

(2)設(shè)拋物線解析式為y=-(x-1)2+k,

∵拋物線與x軸交于點(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴拋物線解析式為y=-(x-1)2+4,

即:拋物線解析式為y=-x2+2x+2;

(2)拋物線與x軸的交點(-1,0),(2,0),當(dāng)y<0時,則函數(shù)的圖象在x軸的下方,由函數(shù)的圖象可知:x>2或x<-1;【點睛】本題主要考查了二次函數(shù)與一元二次方程、不等式的關(guān)系,以及求函數(shù)解析式的方法,能從圖像中得到關(guān)鍵信息是解決此題的關(guān)鍵.21、4【解析】先設(shè)t=x2+y2,則方程即可變形為t(t-1)-12=0,解方程即可求得t即x2+y2的值.【詳解】設(shè)t=x2+y2,所以原式可變形為為t(t-1)-12=0,t2-t-12=0,(t-4)(t+3)=0,所以t=-3或t=4;因為x2+y2≥0,所以x2+y2=4.【點睛】此題考查換元法解一元二次方程,解題關(guān)鍵在于設(shè)t=x2+y2.22、(1)y=-x2+2x+1;(2)拋物線上存在點D,使得△ACD的面積最大,此時點D的坐標(biāo)為(,)且△ACD面積的最大值;(1)在拋物線上存在點E,使得△ACE是以AC為直角邊的直角三角形點E的坐標(biāo)是(1,4)或(-2,-5).【分析】(1)因為點A(1,0),點C(0,1)在拋物線y=?x2+bx+c上,可代入確定b、c的值;(2)過點D作DH⊥x軸,設(shè)D(t,-t2+2t+1),先利用圖象上點的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用頂點坐標(biāo)求最值即可;(1)分兩種情況討論:①過點A作AE1⊥AC,交拋物線于點E1,交y軸于點F,連接E1C,求出點F的坐標(biāo),再求直線AE的解析式為y=x?1,再與二次函數(shù)的解析式聯(lián)立方程組求解即可;②過點C作CE⊥CA,交拋物線于點E2、交x軸于點M,連接AE2,求出直線CM的解析式為y=x+1,再與二次函數(shù)的解析式聯(lián)立方程組求解即可.【詳解】(1)解:∵二次函數(shù)y=-x2+bx+c與x軸的交點為點A(1,0)與y軸交于點C(0,1)∴解之得∴這個二次函數(shù)的解析式為y=-x2+2x+1(2)解:如圖,設(shè)D(t,-t2+2t+1),過點D作DH⊥x軸,垂足為H,則S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴當(dāng)t=時,△ACD的面積有最大值此時-t2+2t+1=∴拋物線上存在點D,使得△ACD的面積最大,此時點D的坐標(biāo)為(,)且△ACD面積的最大值(1)在拋物線上存在點E,使得△ACE是以AC為直角邊的直角三角形點E的坐標(biāo)是(1,4)或(-2,-5).理由如下:有兩種情況:①如圖,過點A作AE1⊥AC,交拋物線于點E1、交y軸于點F,連接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴點F的坐標(biāo)為(0,?1).設(shè)直線AE的解析式為y=kx+b,將(0,?1),(1,0)代入y=kx+b得:解得∴直線AE的解析式為y=x?1,由解得或∴點E1的坐標(biāo)為(?2,?5).②如圖,過點C作CE⊥CA,交拋物線于點E2、交x軸于點M,連接AE2.∵∠CAO=45°,∴∠CMA=45°,OM=OC=1.∴點M的坐標(biāo)為(?1,0),設(shè)直線CM的解析式為y=kx+b,將(0,1),(-1,0)代入y=kx+b得:解得∴直線CM的解析式為y=x+1.由解得:或∴點E2的坐標(biāo)為(1,4).綜上,在拋物線上存在點E1(?2,?5)、E2(1,4),使△ACE1、△ACE2是以AC為直角邊的直角三角形.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的最值問題,二次函數(shù)中的直角三角形問題.觀察圖象、求出特殊點坐標(biāo)是解題的關(guān)鍵.23、(1)見解析;(2)結(jié)論AD·BC=AP·BP仍成立.理由見解析;(3)t的值為2秒或10秒.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證得△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;

(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證得△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;

(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=6,根據(jù)勾股定理可得DE=8,由題意可得DC=DE=8,則有BC=10?8=2,易證∠DPC=∠A=∠B,根據(jù)AD·BC=AP·BP,即可求出t的值.【詳解】(1)證明:∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(2)結(jié)論AD·BC=AP·BP仍成立理由:∵∠BPD=∠DPC+∠BPC,且∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=θ,∴∠BPC=∠ADP,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(3)如圖3,過點D作DE⊥AB于點E,∵AD=BD=10,AB=12,.∴AE=BE=6,∴,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=8,∴BC=10-8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的經(jīng)驗得AD·BC=AP·BP,又∵AP=t,BP=12-t,∴,解得:,,∴t的值為2秒或10秒.【點睛】本題是對K型相似模型的探究和應(yīng)用,考查了相似三角形的判定與性質(zhì)、切線的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、等角的余角相等、三角形外角的性質(zhì)、解一元二次方程等知識以及運用已有經(jīng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論