黑龍江省哈爾濱市十七中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
黑龍江省哈爾濱市十七中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
黑龍江省哈爾濱市十七中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
黑龍江省哈爾濱市十七中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
黑龍江省哈爾濱市十七中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市十七中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列方程是一元二次方程的是()A.2x﹣3y+1 B.3x+y=z C.x2﹣5x=1 D.x2﹣+2=02.下列根式是最簡二次根式的是()A. B. C. D.3.10件產(chǎn)品中有2件次品,從中任意抽取1件,恰好抽到次品的概率是()A. B. C. D.4.劉徽是我國古代一位偉大的數(shù)學(xué)家,他的杰作《九章算術(shù)注》和《海寶算經(jīng)》是中國寶貴的文化遺產(chǎn).他所提出的割圓術(shù)可以估算圓周率.割圓術(shù)是依次用圓內(nèi)接正六邊形、正十二邊形…去逼近圓.如圖,的半徑為1,則的內(nèi)接正十二邊形面積為()A.1 B.3 C.3.1 D.3.145.已知,點是線段上的黃金分割點,且,則的長為()A. B. C. D.6.如圖是二次函數(shù)y=ax1+bx+c(a≠0)圖象的一部分,對稱軸是直線x=﹣1.關(guān)于下列結(jié)論:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的兩個根為x1=0,x1=﹣4,其中正確的結(jié)論有()A.②③ B.②③④ C.②③⑤ D.②③④⑤7.如圖,在△ABC中,點D,E分別在AB,AC上,DE∥BC,且DE將△ABC分成面積相等的兩部分,那么的值為()A.﹣1 B.+1 C.1 D.8.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③10.如圖,由一些完全相同的小正方體搭成的幾何體的左視圖和俯視圖,則這個幾何體的主視圖不可能是()A. B. C. D.11.如圖1,E為矩形ABCD邊AD上一點,點P從點C沿折線CD﹣DE﹣EB運動到點B時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是()A.AE=8cmB.sin∠EBC=C.當(dāng)10≤t≤12時,D.當(dāng)t=12s時,△PBQ是等腰三角形12.如圖所示,不能保證△ACD∽△ABC的條件是()A.AB:BC=AC:CD B.CD:AD=BC:AC C.CD2=ADDC D.AC2=ABAD二、填空題(每題4分,共24分)13.有4張看上去無差別的卡片,上面分別寫著2,3,4,6,小紅隨機(jī)抽取1張后,放回并混在一起,再隨機(jī)抽取1張,則小紅第二次取出的數(shù)字能夠整除第一次取出的數(shù)字的概率為________.14.某商場購進(jìn)一批單價為16元的日用品,若按每件20元的價格銷售,每月能賣出360件,若按每件25元的價格銷售,每月能賣210件,假定每月銷售件數(shù)y(件)與每件的銷售價格x(元/件)之間滿足一次函數(shù).在商品不積壓且不考慮其他因素的條件下,銷售價格定為______元時,才能使每月的毛利潤w最大,每月的最大毛利潤是為_______元.15.已知是關(guān)于的一元二次方程的兩個實數(shù)根,則=____.16.如圖,從一塊直徑是的圓形鐵皮上剪出一個圓心角是的扇形,如果將剪下來的扇形圍成一個圓錐,那么圓錐的底面圓的半徑為___________.17.反比例函數(shù)y=的圖象在第一、三象限,則m的取值范圍是_______.18.已知函數(shù)是反比例函數(shù),則的值為__________.三、解答題(共78分)19.(8分)問題呈現(xiàn):如圖1,在邊長為1小的正方形網(wǎng)格中,連接格點A、B和C、D,AB和CD相交于點P,求tan∠CPB的值方法歸納:求一個銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個直角三角形,觀察發(fā)現(xiàn)問題中∠CPB不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題,比如連接格點B、E,可得BE∥CD,則∠ABE=∠CPB,連接AE,那么∠CPB就變換到Rt△ABE中.問題解決:(1)直接寫出圖1中tanCPB的值為______;(2)如圖2,在邊長為1的正方形網(wǎng)格中,AB與CD相交于點P,求cosCPB的值.20.(8分)如圖,在?ABCD中過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.(1)求證:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的長.21.(8分)大學(xué)生小李和同學(xué)一起自主創(chuàng)業(yè)開辦了一家公司,公司對經(jīng)營的盈虧情況在每月的最后一天結(jié)算一次.在1-12月份中,該公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系.(1)求y與x函數(shù)關(guān)系式.(2)該公司從哪個月開始“扭虧為盈”(當(dāng)月盈利)?直接寫出9月份一個月內(nèi)所獲得的利潤.(3)在前12個月中,哪個月該公司所獲得利潤最大?最大利潤為多少?22.(10分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象分別相交于第一、三象限內(nèi)的,兩點,與軸交于點.(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)在軸上找到一點使最大,請直接寫出此時點的坐標(biāo).23.(10分)已知AD為⊙O的直徑,BC為⊙O的切線,切點為M,分別過A,D兩點作BC的垂線,垂足分別為B,C,AD的延長線與BC相交于點E.(1)求證:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的長.24.(10分)如圖,在平行四邊形中,為邊上一點,平分,連接,已知,.求的長;求平行四邊形的面積;求.25.(12分)如圖,在四邊形中,,.點在上,.(1)求證:;(2)若,,,求的長.26.如圖,點F為正方形ABCD內(nèi)一點,△BFC繞點B逆時針旋轉(zhuǎn)后與△BEA重合(1)求△BEF的形狀(2)若∠BFC=90°,說明AE∥BF

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)一元二次方程必須滿足兩個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為1.逐一判斷即可.【詳解】解:A、它不是方程,故此選項不符合題意;B、該方程是三元一次方程,故此選項不符合題意;C、是一元二次方程,故此選項符合題意;D、該方程不是整式方程,故此選項不符合題意;故選:C.【點睛】此題主要考查了一元二次方程定義,一元二次方程必須滿足兩個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為1.2、A【解析】試題分析:判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.解:A.符合最簡二次根式的兩個條件,故本選項正確;B.被開方數(shù)含分母,不是最簡二次根式,故本選項錯誤;C.被開方數(shù)含能開得盡方的因數(shù),不是最簡二次根式,故本選項錯誤;D.被開方數(shù)含能開得盡方的因數(shù),不是最簡二次根式,故本選項錯誤.故選A.3、D【分析】由于10件產(chǎn)品中有2件次品,所以從10件產(chǎn)品中任意抽取1件,抽中次品的概率是.【詳解】解:.故選:D.【點睛】本題考查的知識點是用概率公式求事件的概率,根據(jù)題目找出全部情況的總數(shù)以及符合條件的情況數(shù)目是解此題的關(guān)鍵.4、B【分析】根據(jù)直角三角形的30度角的性質(zhì)以及三角形的面積公式計算即可解決問題.【詳解】解:如圖,作AC⊥OB于點C.∵⊙O的半徑為1,∴圓的內(nèi)接正十二邊形的中心角為360°÷12=30°,∴過A作AC⊥OB,∴AC=OA=,∴圓的內(nèi)接正十二邊形的面積S=12××1×=3.故選B.【點睛】此題主要考查了正多邊形和圓,三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.5、A【分析】根據(jù)黃金分割點的定義和得出,代入數(shù)據(jù)即可得出AP的長度.【詳解】解:由于P為線段AB=2的黃金分割點,且,

則.

故選:A.【點睛】本題考查了黃金分割.應(yīng)該識記黃金分割的公式:較短的線段=原線段的,較長的線段=原線段的.6、D【分析】根據(jù)二次函數(shù)的圖像與性質(zhì)即可得出答案.【詳解】由圖像可知,a<0,b<0,故①錯誤;∵圖像與x軸有兩個交點∴,故②正確;當(dāng)x=-3時,y=9a﹣3b+c,在x軸的上方∴y=9a﹣3b+c>0,故③正確;∵對稱軸∴b-4a=0,故④正確;由圖像可知,方程ax1+bx=0的兩個根為x1=0,x1=﹣4,故⑤正確;故答案選擇D.【點睛】本題考查的是二次函數(shù)的圖像與性質(zhì),難度系數(shù)中等,解題關(guān)鍵是根據(jù)圖像判斷出a,b和c的值或者取值范圍.7、D【分析】由條件DE∥BC,可得△ADE∽△ABC,又由DE將△ABC分成面積相等的兩部分,可得S△ADE:S△ABC=1:1,根據(jù)相似三角形面積之比等于相似比的平方,可得答案.【詳解】如圖所示:∵DE∥BC,∴△ADE∽△ABC.設(shè)DE:BC=1:x,則由相似三角形的性質(zhì)可得:S△ADE:S△ABC=1:x1.又∵DE將△ABC分成面積相等的兩部分,∴x1=1,∴x,即.故選:D.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解答本題的關(guān)鍵.8、D【解析】解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.9、D【詳解】∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.10、A【分析】由左視圖可得出這個幾何體有2層,由俯視圖可得出這個幾何體最底層有4個小正方體.分情況討論即可得出答案.【詳解】解:由題意可得出這個幾何體最底層有4個小正方體,有2層,當(dāng)?shù)诙拥谝涣杏?個小正方體時,主視圖為選項B;當(dāng)?shù)诙拥诙杏?個小正方體時,主視圖為選項C;當(dāng)?shù)诙拥谝涣?第二列分別有1個小正方體時,主視圖為選項D;故選:A.【點睛】本題考查的知識點是簡單幾何體的三視圖,根據(jù)所給三視圖能夠還原幾何體是解此題的關(guān)鍵.11、D【分析】觀察圖象可知:點P在CD上運動的時間為6s,在DE上運動的時間為4s,點Q在BC上運動的時間為12s,所以CD=6,DE=4,BC=12,然后結(jié)合三角函數(shù)、三角形的面積等逐一進(jìn)行判斷即可得.【詳解】觀察圖象可知:點P在CD上運動的時間為6s,在DE上運動的時間為4s,點Q在BC上運動的時間為12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正確,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正確,當(dāng)10≤t≤12時,點P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=?t?(20﹣t)?=﹣t2+6t,故C正確,如圖,當(dāng)t=12時,Q點與C點重合,點P在BE上,此時BP=20-12=8,過點P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D錯誤,故選D.【點睛】本題考查動點問題的函數(shù)圖象,涉及了矩形的性質(zhì),勾股定理,三角形函數(shù),等腰三角形的判定等知識,綜合性較強(qiáng),解題的關(guān)鍵是理解題意,讀懂圖象信息,靈活運用所學(xué)知識解決問題.12、D【分析】對應(yīng)邊成比例,且對應(yīng)角相等,是證明三角形相似的一種方法.△ACD和△ABC有個公共的∠A,只需要再證明對應(yīng)邊成比例即滿足相似,否則就不是相似.【詳解】解:圖中有個∠A是公共角,只需要證明對應(yīng)邊成比例即可,△ACD中三條邊AC、AD、DC分別對應(yīng)的△ABC中的AB、AC、BC.A、B、C都滿足對應(yīng)邊成比例,只有D選項不符合.故本題答案選擇D【點睛】掌握相似三角形的判定是解決本題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找出小紅第二次取出的數(shù)字能夠整除第一次取出的數(shù)字的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中小紅第二次取出的數(shù)字能夠整除第一次取出的數(shù)字的結(jié)果數(shù)為7,所以小紅第二次取出的數(shù)字能夠整除第一次取出的數(shù)字的概率=.故答案為.【點睛】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.14、241【分析】本題首先通過待定系數(shù)法求解y與x的關(guān)系式,繼而根據(jù)利潤公式求解二次函數(shù)表達(dá)式,最后根據(jù)二次函數(shù)性質(zhì)求解本題.【詳解】由題意假設(shè),將,代入一次函數(shù)可得:,求解上述方程組得:,則,∵,∴,∴,又因為商品進(jìn)價為16元,故.銷售利潤,整理上式可得:銷售利潤,由二次函數(shù)性質(zhì)可得:當(dāng)時,取最大值為1.故當(dāng)銷售單價為24時,每月最大毛利潤為1元.【點睛】本題考查二次函數(shù)的利潤問題,解題關(guān)鍵在于理清題意,按照題目要求,求解二次函數(shù)表達(dá)式,最后根據(jù)二次函數(shù)性質(zhì)求解此類型題目.15、-3【分析】欲求的值,根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根的和與積,代入數(shù)值計算即可.【詳解】解:根據(jù)題意x1+x2=2,x1?x2=-4,===-3.故答案為:-3.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是經(jīng)常使用的一種解題方法.16、【分析】根據(jù)題意可知扇形ABC圍成圓錐后的底面周長就是弧BC的弧長,再根據(jù)弧長公式和圓周長公式來求解.【詳解】解:作于點,連結(jié)OA、BC,∵∠BAC=90°∴BC是直徑,OB=OC,,圓錐的底面圓的半徑故答案為:【點睛】本題考查了扇形圍成圓錐形,圓錐的底面圓的周長就是原來扇形的弧長,找到它們的關(guān)系是解題的關(guān)鍵.17、m>1【分析】由于反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m的取值范圍即可.【詳解】解:由題意得,反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m>1.故答案為m>1.【點睛】本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握反比例函數(shù)的性質(zhì).18、1【分析】根據(jù)反比例函數(shù)的定義列出方程,然后解一元二次方程即可.【詳解】解:根據(jù)題意得,n2﹣2=﹣1且n+1≠0,整理得,n2=1且n+1≠0,解得n=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的定義,反比例函數(shù)解析式的一般形式(k≠0),也可轉(zhuǎn)化為y=kx﹣1(k≠0)的形式,特別注意不要忽略k≠0這個條件.三、解答題(共78分)19、(1)2;(2)【分析】(1)根據(jù)平行四邊形的判定及平行線的性質(zhì)得到∠CPB=∠ABE,利用勾股定理求出AE,BE,AB,證明△ABE是直角三角形,∠AEB=90°,即可求出tanCPB=tanABE;(2)如圖2中,取格點D,連接CD,DM.通過平行四邊形及平行線的性質(zhì)得到∠CPB=∠MCD,利用勾股定理的逆定理證明△CDM是直角三角形,且∠CDM=90°,即可得到cos∠CPB=cos∠MCD.【詳解】解:(1)連接格點B、E,∵BC∥DE,BC=DE,∴四邊形BCDE是平行四邊形,∴DC∥BE,∴∠CPB=∠ABE,∵AE=,BE=,AB=,∴△ABE是直角三角形,∠AEB=90°,∴tan∠CPB=tan∠ABE=,故答案為:2;(2)如圖2所示,取格點M,連接CM,DM,∵CB∥AM,CB=AM,∴四邊形ABCM是平行四邊形,∴CM∥AB,∴∠CPB=∠MCD,∵CM=,CD=,MD=,,∴△CDM是直角三角形,且∠CDM=90°,∴cos∠CPB=cos∠MCD=.【點睛】本題考查三角形綜合題、平行線的性質(zhì)、勾股定理及勾股定理逆定理、直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題.20、(1)證明見解析;(2).【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,證出∠C=∠AFB,即可得出結(jié)論;(2)由勾股定理求出BE,由三角函數(shù)求出AE,再由相似三角形的性質(zhì)求出AF的長.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=,在Rt△ADE中,AE=AD?sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.考點:相似三角形的判定與性質(zhì);平行四邊形的性質(zhì);解直角三角形.21、(1);(2)從4月份起扭虧為盈;9月份一個月利潤為11萬元;(3)12,17萬元.【分析】(1)根據(jù)題意此拋物線的頂點坐標(biāo)為,設(shè)出拋物線的頂點式,把代入即可求出的值,把的值代入拋物線的頂點式中即可確定出拋物線的解析式;(2)由圖可解答;求8、9兩個月份的總利潤的差即為9月的利潤;(3)根據(jù)前個月內(nèi)所獲得的利潤減去前個月內(nèi)所獲得的利潤,即可表示出第個月內(nèi)所獲得的利潤,為關(guān)于的一次函數(shù),且為增函數(shù),得到取最大為12時,把代入即可求出最多的利潤.【詳解】(1)根據(jù)題意可設(shè):,∵點在拋物線上,∴,解得:,∴即;(2)∵,對稱軸為直線,∴當(dāng)時y隨x的增大而增大,∴從4月份起扭虧為盈;8月份前的總利潤為:萬元,9月份前的總利潤為:萬元,∴9月份一個月利潤為:萬元;(3)設(shè)單月利潤為W萬元,依題意得:,整理得:,∵,∴W隨增大而增大,∴當(dāng)x=12時,利潤最大,最大利潤為17萬元【點睛】本題考查了二次函數(shù)的應(yīng)用,主要考查學(xué)生會利用待定系數(shù)法求函數(shù)的解析式,靈活運用二次函數(shù)的圖象與性質(zhì)解決實際問題,認(rèn)真審題很重要.22、(1),;(2)【分析】(1)利用待定系數(shù)法由點A坐標(biāo)可求反比例函數(shù),然后計算出B的坐標(biāo),于是可求一次函數(shù)的解析式;

(2)根據(jù)一次函數(shù)與y軸的交點P,此交點即為所求.【詳解】解:(1)把代入,可得,反比例函數(shù)的解析式為把點代入,可得,.把,代入,可得解得一次函數(shù)的解析式為;(2)一次函數(shù)的解析式為y1=x+2,令x=0,則y=2,

∴一次函數(shù)與y軸的交點為P(0,2),

此時,PB-PC=BC最大,P即為所求.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)證明見解析(2)4【分析】(1)由AD為直徑,得到所對的圓周角為直角,利用等角的余角相等得到一對角相等,進(jìn)而利用兩對角對應(yīng)相等的三角形相似即可得證;(2)連接OM,由BC為圓的切線,得到OM與BC垂直,利用銳角三角函數(shù)定義及勾股定理即可求出所求.【詳解】解:(1)∵AD為圓O的直徑,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)連接OM.∵BC為圓O的切線,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根據(jù)勾股定理得:ME===4.【點睛】本題考查了相似三角形的判定與性質(zhì),圓周角定理,銳角三角函數(shù)定義以及切線的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.24、(1)10;(2)128;(3)【分析】(1)先根據(jù)平行四邊形的性質(zhì)和角平分線的性質(zhì)求得,然后根據(jù)等角對等邊即可解答;(2)先求出CD=10,再根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論