2022年湖北省黃石市十校聯(lián)考數(shù)學九上期末經(jīng)典模擬試題含解析_第1頁
2022年湖北省黃石市十校聯(lián)考數(shù)學九上期末經(jīng)典模擬試題含解析_第2頁
2022年湖北省黃石市十校聯(lián)考數(shù)學九上期末經(jīng)典模擬試題含解析_第3頁
2022年湖北省黃石市十校聯(lián)考數(shù)學九上期末經(jīng)典模擬試題含解析_第4頁
2022年湖北省黃石市十校聯(lián)考數(shù)學九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,點C是線段AB的黃金分割點(AC>BC),下列結(jié)論錯誤的是()A. B. C. D.2.將拋物線向右平移1個單位,再向上平移3個單位,得到的拋物線是()A. B.C. D.3.如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論正確的個數(shù)是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四邊形ECFG=2S△BGE.A.4 B.3 C.2 D.14.如圖,在扇形紙片AOB中,OA=10,DAOB=36°,OB在直線l上.將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當OA落在l上時,停止旋轉(zhuǎn).則點O所經(jīng)過的路線長為()A.12π B.11π C.10π D.10π+55.如圖,將Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得點C′與△ABC的內(nèi)心重合,已知AC=4,BC=3,則陰影部分的周長為()A.5 B.6 C.7 D.86.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m27.關于二次函數(shù),下列說法錯誤的是()A.它的圖象開口方向向上 B.它的圖象頂點坐標為(0,4)C.它的圖象對稱軸是y軸 D.當時,y有最大值48.如圖,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O為圓心,AO為半徑作半圓,以A為圓心,AB為半徑作弧BD,則圖中陰影部分的面積為()A.3π B.π+1 C.π D.29.已知正六邊形的邊心距是,則正六邊形的邊長是()A. B. C. D.10.下列事件中,必然事件是()A.拋擲個均勻的骰子,出現(xiàn)點向上 B.人中至少有人的生日相同C.兩直線被第三條直線所截,同位角相等 D.實數(shù)的絕對值是非負數(shù)二、填空題(每小題3分,共24分)11.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.12.若,則的值是______.13.甲、乙兩同學在最近的5次數(shù)學測驗中數(shù)學成績的方差分別為甲,乙,則數(shù)學成績比較穩(wěn)定的同學是____________14.如圖,在半徑為的中,的長為,若隨意向圓內(nèi)投擲一個小球,小球落在陰影部分的概率為______________.15.反比例函數(shù)的圖象在每一象限內(nèi),y隨著x的增大而增大,則k的取值范圍是______.16.某數(shù)學興趣小組利用太陽光測量一棵樹的高度(如圖),在同一時刻,測得樹的影長為6米,小明的影長為1米,已知小明的身高為1.5米,則樹高為_________米.17.如圖,在Rt△ABC中,∠ACB=90o,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C,M是BC的中點,N是A′B′的中點,連接MN,若BC=2cm,∠ABC=60°,則線段MN的最大值為_____.18.正五邊形的每個內(nèi)角為______度.三、解答題(共66分)19.(10分)已知關于x的方程x2﹣(m+2)x+2m=1.(1)若該方程的一個根為x=1,求m的值;(2)求證:不論m取何實數(shù),該方程總有兩個實數(shù)根.20.(6分)如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).(1)求燈桿CD的高度;(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)21.(6分)如圖,直線與雙曲線在第一象限內(nèi)交于兩點,已知.(1)求的值及直線的解析式.(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.(3)設點是線段上的一個動點,過點作軸于點是軸上一點,當?shù)拿娣e為時,請直接寫出此時點的坐標.22.(8分)今年某市為創(chuàng)評“全國文明城市”稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.(1)該班男生“小剛被抽中”是事件,“小悅被抽中”是事件(填“不可能”或“必然”或“隨機”);第一次抽取卡片“小悅被抽中”的概率為;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.23.(8分)如圖,在中,,以為直徑作交于點.過點作,垂足為,且交的延長線于點.(1)求證:是的切線;(2)若,,求的長.24.(8分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數(shù)關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調(diào)元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.25.(10分)已知在△ABC中,AB=BC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED.(1)求證:ED=DC;(2)若CD=6,EC=4,求AB的長.26.(10分)為進一步發(fā)展基礎教育,自年以來,某縣加大了教育經(jīng)費的投入,年該縣投入教育經(jīng)費萬元.年投入教育經(jīng)費萬元.假設該縣這兩年投入教育經(jīng)費的年平均增長率相同.求這兩年該縣投入教育經(jīng)費的年平均增長率.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】∵AC>BC,∴AC是較長的線段,根據(jù)黃金分割的定義可知:=≈0.618,故A、C、D正確,不符合題意;AC2=AB?BC,故B錯誤,符合題意;故選B.2、D【分析】由題意可知原拋物線的頂點及平移后拋物線的頂點,根據(jù)平移不改變拋物線的二次項系數(shù)可得新的拋物線解析式.【詳解】解:由題意得原拋物線的頂點為(0,0),∴平移后拋物線的頂點為(1,3),∴得到的拋物線解析式為y=2(x-1)2+3,故選:D.【點睛】本題考查二次函數(shù)的幾何變換,熟練掌握二次函數(shù)的平移不改變二次項的系數(shù)得出新拋物線的頂點是解決本題的關鍵.3、B【解析】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),則PB=2k在Rt△BPQ中,設QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正確;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面積:△BCF的面積=1:5,∴S四邊形ECFG=4S△BGE,故④錯誤.故選B.點睛:本題主要考查了四邊形的綜合題,涉及正方形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及折疊的性質(zhì)的知識點,解決的關鍵是明確三角形翻轉(zhuǎn)后邊的大小不變,找準對應邊,角的關系求解.4、A【分析】點O所經(jīng)過的路線是三段弧,一段是以點B為圓心,10為半徑,圓心角為90°的弧,另一段是一條線段,和弧AB一樣長的線段,最后一段是以點A為圓心,10為半徑,圓心角為90°的弧,從而得出答案.【詳解】由題意得點O所經(jīng)過的路線長=90π×10故選A.【點睛】解題的關鍵是熟練掌握弧長公式:,注意在使用公式時度不帶單位.5、A【分析】由三角形面積公式可求C'E的長,由相似三角形的性質(zhì)可求解.【詳解】解:如圖,過點C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延長C'E交A'B'于點F,連接AC',BC',CC',∵點C'與△ABC的內(nèi)心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,

∴C'E=C'G=C'H,

∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,

∵將Rt△ABC平移到△A'B'C'的位置,

∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3

∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'

∴△C'MN∽△C'A'B',∴C陰影部分=C△C'A'B'×=(5+3+4)×=5.故選A.【點睛】本題考查了三角形的內(nèi)切圓和內(nèi)心,相似三角形的判定和性質(zhì),熟練運用相似三角形的性質(zhì)是本題的關鍵.6、A【分析】由OA4n=2n知OA2017=+1=1009,據(jù)此得出A2A2018=1009-1=1008,據(jù)此利用三角形的面積公式計算可得.【詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【點睛】本題主要考查點的坐標的變化規(guī)律,解題的關鍵是根據(jù)圖形得出下標為4的倍數(shù)時對應長度即為下標的一半,據(jù)此可得.7、D【分析】由拋物線的解析式可求得其開口方向、對稱軸、函數(shù)的最值即可判斷.【詳解】∵,∴拋物線開口向上,對稱軸為直線x=0,頂點為(0,4),當x=0時,有最小值4,故A、B、C正確,D錯誤;故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標為(h,k).8、C【分析】根據(jù)題意和圖形可以求得的長,然后根據(jù)圖形,可知陰影部分的面積是半圓的面積減去扇形的面積,從而可以解答本題.【詳解】解:在中,,,,圖中陰影部分的面積為:,故選:C.【點睛】本題考查扇形面積的計算,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.9、A【分析】如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB,然后求出正六邊形的中心角,證出△OAB為等邊三角形,然后利用等邊三角形的性質(zhì)和銳角三角函數(shù)即可求出結(jié)論.【詳解】解:如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB正六邊形的中心角∠AOB=360°÷6=60°∴△OAB為等邊三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六邊形的邊長是.故選A.【點睛】此題考查的是根據(jù)正六邊形的邊心距求邊長,掌握中心角的定義、等邊三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關鍵.10、D【分析】根據(jù)概率、平行線的性質(zhì)、負數(shù)的性質(zhì)對各選項進行判斷.【詳解】A.拋擲個均勻的骰子,出現(xiàn)點向上的概率為,錯誤.B.367人中至少有人的生日相同,錯誤.C.兩條平行線被第三條直線所截,同位角相等,錯誤.D.實數(shù)的絕對值是非負數(shù),正確.故答案為:D.【點睛】本題考查了必然事件的性質(zhì)以及判定,掌握概率、平行線的性質(zhì)、負數(shù)的性質(zhì)是解題的關鍵.二、填空題(每小題3分,共24分)11、1【解析】連接BD.根據(jù)圓周角定理可得.【詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【點睛】考核知識點:圓周角定理.理解定義是關鍵.12、【分析】根據(jù)合比性質(zhì):,可得答案.【詳解】由合比性質(zhì),得,故答案為:.【點睛】本題考查了比例的性質(zhì),利用合比性質(zhì)是解題關鍵.13、甲【分析】根據(jù)方差的意義即方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定進行分析即可.【詳解】解:由于甲<乙,則數(shù)學成績較穩(wěn)定的同學是甲.故答案為:甲.【點睛】本題考查方差的意義.注意掌握方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.14、【分析】根據(jù)圓的面積公式和扇形的面積公式分別求得各自的面積,再根據(jù)概率公式即可得出答案.【詳解】∵圓的面積是:,扇形的面積是:,∴小球落在陰影部分的概率為:.故答案為:.【點睛】本題主要考查了幾何概率問題,用到的知識點為:概率=相應面積與總面積之比.15、【分析】利用反比例函數(shù)圖象的性質(zhì)即可得.【詳解】由反比例函數(shù)圖象的性質(zhì)得:解得:.【點睛】本題考查了反比例函數(shù)圖象的性質(zhì),對于反比例函數(shù)有:(1)當時,函數(shù)圖象位于第一、三象限,且在每一象限內(nèi),y隨x的增大而減?。唬?)當時,函數(shù)圖象位于第二、四象限,且在每一象限內(nèi),y隨x的增大而增大.16、1【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,對應比值相等進而得出答案.【詳解】解:根據(jù)相同時刻的物高與影長成比例.設樹的高度為,則,解得:.故答案為:1.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握其性質(zhì)定義.17、3cm【分析】連接CN.根據(jù)直角三角形斜邊中線的性質(zhì)求出,利用三角形的三邊關系即可解決問題.【詳解】連接CN.在Rt△ABC中,∵∠ACB=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵NB′=NA′,∴,∵CM=BM=1,∴MN≤CN+CM=3,∴MN的最大值為3,故答案為3cm.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),直角三角形斜邊中線的性質(zhì),三角形的三邊關系等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.18、1【分析】先求出正五邊形的內(nèi)角和,再根據(jù)正五邊形的每個內(nèi)角都相等,進而求出其中一個內(nèi)角的度數(shù).【詳解】解:正五邊形的內(nèi)角和是:(5﹣2)×180°=540°,則每個內(nèi)角是:540÷5=1°.故答案為:1.【點睛】本題主要考查多邊形的內(nèi)角和計算公式,以及正多邊形的每個內(nèi)角都相等等知識點.三、解答題(共66分)19、(2)2;(2)見解析【分析】(2)將x=2代入方程中即可求出答案.(2)根據(jù)根的判別式即可求出答案.【詳解】(2)將x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由題意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不論m取何實數(shù),該方程總有兩個實數(shù)根.【點睛】本題考查了一元二次方程,解答本題的關鍵是熟練運用根的判別式,本題屬于基礎題型.20、(1)10米;(2)11.4米【解析】(1)延長DC交AN于H.只要證明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解決問題.【詳解】(1)如圖,延長DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【點睛】本題考查解直角三角形的應用﹣坡度坡角問題,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.21、(1),(2)解集為或(3)【分析】(1)先把B(2,1)代入,求出反比例函數(shù)解析式,進而求出點A坐標,最后用待定系數(shù)法,即可得出直線AB的解析式;(2)直接利用函數(shù)圖象得出結(jié)論;(3)先設出點P坐標,進而表示出△PED的面積等于,解之即可得出結(jié)論.【詳解】解:(1):∵點在雙曲線上,∴,∴雙曲線的解析式為.∵在雙曲線,∴,∴.∵直線過兩點,∴,解得∴直線的解析式為(2)根據(jù)函數(shù)圖象,由不等式與函數(shù)圖像的關系可得:雙曲線在直線上方的部分對應的x范圍是:或,∴不等式的解集為或.(3)點的坐標為.設點,且,則.∵當時,解得,∴此時點的坐標為.【點睛】此題是反比例函數(shù)綜合題,主要考查了一次函數(shù)和反比例函數(shù)的圖象和性質(zhì),待定系數(shù)法,三角形的面積公式,求出直線AB的解析式是解本題的關鍵.22、(1)不可能;隨機;;(2)【解析】(1)根據(jù)從女班干部中抽取,由此可知男生“小剛被抽中”是不可能事件,“小悅被抽中”是隨機事件,第一次抽取有4種可能,“小悅被抽中”有1種可能,由此即可求得概率;(2)畫樹狀圖得到所有可能的情況,然后找出符合題意的情況數(shù),利用概率公式進行計算即可得.【詳解】(1)因為從女班干部中進行抽取,所以男生“小剛被抽中”是不可能事件,“小悅被抽中”是隨機事件,第一次抽取有4種可能,“小悅被抽中”有1種可能,所以“小悅被抽中”的概率為,故答案為不可能,隨機,;(2)畫樹狀圖如下:由樹狀圖可知共12種可能,其中“小惠被抽中”有6種可能,所以“小惠被抽中”的概率是:.【點睛】本題考查了隨機事件、不可能事件、列表或畫樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)見解析;(2)BD長為1.【分析】(1)連接OD,AD,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;

(2)根據(jù)等腰三角形三線合一的性質(zhì)證得∠BAD=∠BAC=30°,由30°的直角三角形的性質(zhì)即可求得BD.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位線,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD長為1.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、等腰三角形的性質(zhì),圓的切線的判定,30°的直角三角形的性質(zhì),掌握本題的輔助線的作法是解題的關鍵.24、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據(jù)題意列出方程組求解即可;(2)①根據(jù)總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數(shù)關系式;②根據(jù)題意,得,解得,根據(jù)一次函數(shù)的增減性可得當當時,取最大值;(3)根據(jù)題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據(jù)題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據(jù)題意,得,即.②根據(jù)題意,得,解得.,,隨的增大而減小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論