安徽省蕪湖市埭南中學2025屆九上數(shù)學期末復習檢測試題含解析_第1頁
安徽省蕪湖市埭南中學2025屆九上數(shù)學期末復習檢測試題含解析_第2頁
安徽省蕪湖市埭南中學2025屆九上數(shù)學期末復習檢測試題含解析_第3頁
安徽省蕪湖市埭南中學2025屆九上數(shù)學期末復習檢測試題含解析_第4頁
安徽省蕪湖市埭南中學2025屆九上數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省蕪湖市埭南中學2025屆九上數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.一個布袋里裝有10個只有顏色不同的球,其中4個黃球,6個白球.從布袋里任意摸出1個球,則摸出的球是黃球的概率為()A. B. C. D.2.在下列各式中,運算結(jié)果正確的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2?x3=x6 D.(x﹣1)2=x2﹣13.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.4.用配方法解方程-4x+3=0,下列配方正確的是()A.=1 B.=1 C.=7 D.=45.下列計算中,結(jié)果是的是A. B. C. D.6.半徑為6的圓上有一段長度為1.5的弧,則此弧所對的圓心角為()A. B. C. D.7.如圖,反比例函數(shù)的圖象上有一點A,AB平行于x軸交y軸于點B,△ABO的面積是1,則反比例函數(shù)的表達式是()A. B. C. D.8.下列事件是必然事件的是()A.3個人分成兩組,并且每組必有人,一定有2個人分在一組B.拋一枚硬幣,正面朝上C.隨意擲兩個均勻的骰子,朝上面的點數(shù)之和為6D.打開電視,正在播放動畫片9.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.10.已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是()A.a(chǎn)bc<0 B.-3a+c<0C.b2-4ac≥0 D.將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c二、填空題(每小題3分,共24分)11.如圖,在△ABC中,DE∥BC,,則=_____.12.分解因式:2x2﹣8=_____________13.已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.14.將一副三角板按圖所示的方式疊放在一起,使直角的頂點重合于點,并能使點自由旋轉(zhuǎn),設(shè),,則與之間的數(shù)量關(guān)系是__________.15.如圖,矩形中,,點是邊上一點,交于點,則長的取值范圍是____.16.已知x=﹣1是方程x2﹣2mx﹣3=0的一個根,則該方程的另一個根為_____.17.若,,則______.18.函數(shù)的自變量的取值范圍是.三、解答題(共66分)19.(10分)在平面直角坐標系xOy中,拋物線交y軸于點為A,頂點為D,對稱軸與x軸交于點H.(1)求頂點D的坐標(用含m的代數(shù)式表示);(2)當拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;(3)當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.20.(6分)如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.求:(1)∠C的度數(shù);(2)A,C兩港之間的距離為多少km.21.(6分)某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)(1)分別求出y1、y2的函數(shù)關(guān)系式(不寫自變量取值范圍);(2)通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?22.(8分)如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P為BC的中點,動點Q從點P出發(fā),沿射線PC方向以cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設(shè)點Q運動的時間為t秒.(1)當t=2.5s時,判斷直線AB與⊙P的位置關(guān)系,并說明理由.(2)已知⊙O為Rt△ABC的外接圓,若⊙P與⊙O相切,求t的值.23.(8分)計算:(﹣1)2+3tan30°﹣(﹣2)(+2)+2sin60°.24.(8分)如圖,在中,,是的平分線,是上一點,以為半徑的經(jīng)過點.(1)求證:是切線;(2)若,,求的長.25.(10分)為倡導綠色出行,某市推行“共享單車”公益活動,在某小區(qū)分別投放甲、乙兩種不同款型的共享單車,甲型、乙型單車投放成本分別為元和元,乙型車的成本單價比甲型車便宜元,但兩種類型共享單車的投放量相同,求甲型共享單車的單價是多少元?26.(10分)某運動會期間,甲、乙、丙三位同學參加乒乓球單打比賽,用抽簽的方式確定第一場比賽的人選.(1)若已確定甲參加第一次比賽,求另一位選手恰好是乙同學的概率;(2)用畫樹狀圖或列表的方法,寫出參加第一場比賽選手的所有可能,并求選中乙、丙兩位同學參加第一場比賽的概率.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】用黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】因為一共有10個球,其中黃球有4個,

所以從布袋里任意摸出1個球,摸到白球的概率為.故選:B.【點睛】本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.2、B【分析】根據(jù)合并同類項、完全平方公式及同底數(shù)冪的乘法法則進行各選項的判斷即可.【詳解】解:A、x2+x2=2x2,故本選項錯誤;B、x﹣2x=﹣x,故本選項正確;C、x2?x3=x5,故本選項錯誤;D、(x﹣1)2=x2﹣2x+1,故本選項錯誤.故選B.【點睛】本題主要考查了合并同類項、完全平方公式及同底數(shù)冪的乘法運算等,掌握運算法則是解題的關(guān)鍵.3、A【解析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.4、A【解析】用配方法解方程-4x+3=0,移項得:-4x=-3,配方得:-4x+4=1,即=1.故選A.5、D【解析】根據(jù)冪的乘方、同底數(shù)冪的乘法的運算法則計算后利用排除法求解.【詳解】解:A、a2+a4≠a6,不符合;B、a2?a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故選D.【點睛】本題考查了合并同類項、同底數(shù)冪的乘法、冪的乘方.需熟練掌握且區(qū)分清楚,才不容易出錯.6、B【分析】根據(jù)弧長公式,即可求解.【詳解】∵,∴,解得:n=75,故選B.【點睛】本題主要考查弧長公式,掌握是解題的關(guān)鍵.7、C【分析】如圖,過點A作AC⊥x軸于點C,構(gòu)建矩形ABOC,根據(jù)反比例函數(shù)系數(shù)k的幾何意義知|k|=四邊形ABOC的面積.【詳解】如圖,過點A作AC⊥x軸于點C.則四邊形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=?2.又∵函數(shù)圖象位于第一象限,∴k>0,∴k=2.則反比函數(shù)解析式為.故選C.【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關(guān)鍵在于掌握反比例函數(shù)的性質(zhì).8、A【分析】根據(jù)必然事件是指在一定條件下,一定發(fā)生的事件,對每一選項判斷即可.【詳解】解:A、3個人分成兩組,并且每組必有人,一定有2個人分在一組是必然事件,符合題意,故選A;B、拋一枚硬幣,正面朝上是隨機事件,故不符合題意,B選項錯誤;C、隨意擲兩個均勻的骰子,朝上面的點數(shù)之和為6是隨機事件,故不符合題意,C選項錯誤;D、打開電視,正在播放動畫片是隨機事件,故不符合題意,D選項錯誤;故答案選擇D.【點睛】本題考查的是事件的分類,事件分為必然事件,隨機事件和不可能事件,掌握概念是解題的關(guān)鍵.9、B【解析】連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,屬于中考??碱}型.10、B【解析】解:A.由開口向下,可得a<0;又由拋物線與y軸交于負半軸,可得c<0,然后由對稱軸在y軸右側(cè),得到b與a異號,則可得b>0,故得abc>0,故本選項錯誤;B.根據(jù)圖知對稱軸為直線x=2,即=2,得b=﹣4a,再根據(jù)圖象知當x=1時,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本選項正確;C.由拋物線與x軸有兩個交點,可得b2﹣4ac>0,故本選項錯誤;D.y=ax2+bx+c=,∵=2,∴原式=,∴向左平移2個單位后所得到拋物線的解析式為,故本選項錯誤;故選B.二、填空題(每小題3分,共24分)11、【分析】先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關(guān)鍵.12、2(x+2)(x﹣2)【分析】先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點睛】考核知識點:因式分解.掌握基本方法是關(guān)鍵.13、0<m<13【解析】利用待定系數(shù)法得出直線解析式,再得出平移后得到的直線,求與坐標軸交點的坐標,轉(zhuǎn)化為直角三角形中的問題,再由直線與圓的位置關(guān)系的判定解答.【詳解】把點(12,﹣5)代入直線y=kx得,﹣5=12k,∴k=﹣512由y=﹣512x平移m(m>0)個單位后得到的直線l所對應(yīng)的函數(shù)關(guān)系式為y=﹣5設(shè)直線l與x軸、y軸分別交于點A、B,(如圖所示)當x=0時,y=m;當y=0時,x=125∴A(125即OA=125在Rt△OAB中,AB=OA過點O作OD⊥AB于D,∵S△ABO=12OD?AB=1∴12OD?135m=1∵m>0,解得OD=1213由直線與圓的位置關(guān)系可知1213m<6,解得m<13故答案為0<m<132【點睛】本題考查了直線的平移、直線與圓的位置關(guān)系等,能用含m的式子表示出原點到平移后的直線的距離是解題的關(guān)鍵.本題有一定的難度,利用數(shù)形結(jié)合思想進行解答比較直觀明了.14、【分析】分重疊和不重疊兩種情況討論,由旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】如圖,由題意得:,,,.如圖,由題意得:,,,,.綜上所述,,故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),靈活運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.15、【分析】證明,利用相似比列出關(guān)于AD,DE,EC,CF的關(guān)系式,從而求出長的取值范圍.【詳解】∵∴∴∵四邊形是矩形∴∴∴∴∴∴因為∴故答案為:.【點睛】本題考查了一元二次方程的最值問題,掌握相似三角形的性質(zhì)以及判定、解一元二次方程得方法是解題的關(guān)鍵.16、1【分析】根據(jù)根與系數(shù)的關(guān)系即可求出答案.【詳解】解:設(shè)另外一個根為x,由根與系數(shù)的關(guān)系可知:﹣x=﹣1,∴x=1,故答案為:1.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,熟知根與系數(shù)的關(guān)系是解題的關(guān)鍵.17、28【分析】先根據(jù)完全平方公式把變形,然后把,代入計算即可.【詳解】∵,,∴(a+b)2-2ab=36-8=28.故答案為:28.【點睛】本題考查了完全平方公式的變形求值,熟練掌握完全平方公式(a±b)2=a2±2ab+b2是解答本題的關(guān)鍵.18、x>1【詳解】解:依題意可得,解得,所以函數(shù)的自變量的取值范圍是三、解答題(共66分)19、(1)頂點D(m,1-m);(1)向左平移了1個單位,向上平移了1個單位;(3)m=-1或m=-1.【解析】試題分析:把拋物線的方程配成頂點式,即可求得頂點坐標.把點代入求出拋物線方程,根據(jù)平移規(guī)律,即可求解.分兩種情況進行討論.試題解析:(1)∵,∴頂點D(m,1-m).(1)∵拋物線過點(1,-1),∴.即,∴或(舍去),∴拋物線的頂點是(1,-1).∵拋物線的頂點是(1,1),∴向左平移了1個單位,向上平移了1個單位.(3)∵頂點D在第二象限,∴.情況1,點A在軸的正半軸上,如圖(1).作于點G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍).情況1,點A在軸的負半軸上,如圖(1).作于點G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍),或20、(1)∠C=60°(2)AC=【分析】(1)根據(jù)方位角的概念確定∠ACB=40°+20°=60;(2)AB=30,過B作BE⊥AC于E,解直角三角形即可得到結(jié)論.【詳解】解:(1)如圖,在點C處建立方向標根據(jù)題意得,AF∥CM∥BD∴∠ACM=∠FAC,∠BCM=∠DBC∴∠ACB=∠ACM+∠BCM=40°+20°=60°,(2)∵AB=30,過B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,

∴AC=AE+CE=30+10,∴A,C兩港之間的距離為(30+10)km,【點睛】本題考查了解直角三角形的應(yīng)用,方向角問題,三角形的內(nèi)角和,是基礎(chǔ)知識比較簡單.21、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【分析】(1)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關(guān)系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設(shè)y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設(shè)y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y(tǒng)1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴當x=5時,W最大值=.故5月出售每千克收益最大,最大為元.【點睛】本題考查了一次函數(shù)和二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)法求解析式是解題關(guān)鍵,掌握配方法是求二次函數(shù)最大值常用的方法22、(1)相切,證明見解析;(2)t為s或s【分析】(1)直線AB與⊙P關(guān)系,要考慮圓心到直線AB的距離與⊙P的半徑的大小關(guān)系,作PH⊥AB于H點,PH為圓心P到AB的距離,在Rt△PHB中,由勾股定理PH,當t=2.5s時,求出PQ的長,比較PH、PQ大小即可,(2)OP為兩圓的連心線,圓P與圓O內(nèi)切rO-rP=OP,圓O與圓P內(nèi)切,rP-rO=OP即可.【詳解】(1)直線AB與⊙P相切.理由:作PH⊥AB于H點,∵∠ACB=90°,∠ABC=30°,AC=10,∴AB=2AC=20,BC=,∵P為BC的中點∴BP=∴PH=BP=,當t=2.5s時,PQ=,∴PH=PQ=∴直線AB與⊙P相切,(2)連結(jié)OP,∵O為AB的中點,P為BC的中點,∴OP=AC=5,∵⊙O為Rt△ABC的外接圓,∴AB為⊙O的直徑,∴⊙O的半徑OB=10,∵⊙P與⊙O相切,∴PQ-OB=OP或OB-PQ=OP即t-10=5或10-t=5,∴t=或t=,故當t為s或s時,⊙P與⊙O相切.【點睛】本題考查直線與圓的位置關(guān)系,圓與圓相切時求運動時間t問題,關(guān)鍵點到直線的距離與半徑是否相等,會求點到直線的距離,會用t表示半徑與點到直線的距離,抓住兩圓相切分清情況,由圓心在圓O內(nèi),沒有外切,只有內(nèi)切,要會分類討論,掌握圓P與圓O內(nèi)切rO-rP=OP,圓O與圓P內(nèi)切,rP-rO=OP.23、3【解析】把三角函數(shù)的特殊值代入運算即可.【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論