2025屆江蘇省南京市秦淮區(qū)四校聯(lián)考數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第1頁
2025屆江蘇省南京市秦淮區(qū)四校聯(lián)考數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第2頁
2025屆江蘇省南京市秦淮區(qū)四校聯(lián)考數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第3頁
2025屆江蘇省南京市秦淮區(qū)四校聯(lián)考數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第4頁
2025屆江蘇省南京市秦淮區(qū)四校聯(lián)考數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省南京市秦淮區(qū)四校聯(lián)考數(shù)學九上期末學業(yè)質量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在正方形網(wǎng)格中,已知的三個頂點均在格點上,則()A.2 B. C. D.2.如圖,下面圖形及各個選項均是由邊長為1的小方格組成的網(wǎng)格,三角形的頂點均在小方格的頂點上,下列四個選項中哪一個陰影部分的三角形與已知相似.()A. B. C. D.3.函數(shù)y=與y=kx+k(k為常數(shù)且k≠0)在同一平面直角坐標系中的圖象可能是()A. B. C. D.4.下列方程中有一個根為﹣1的方程是()A.x2+2x=0 B.x2+2x﹣3=0 C.x2﹣5x+4=0 D.x2﹣3x﹣4=05.如圖,⊙O中,點D,A分別在劣弧BC和優(yōu)弧BC上,∠BDC=130°,則∠BOC=()A.120° B.110° C.105° D.100°6.在平面直角坐標系xOy中,若點P的橫坐標和縱坐標相等,則稱點P為完美點.已知二次函數(shù)的圖象上有且只有一個完美點,且當時,函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是()A. B. C. D.7.一元二次方程4x2﹣3x+=0根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根8.下列航空公司的標志中,是軸對稱圖形的是()A. B. C. D.9.下列所給圖形是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.10.在同一平面直角坐標系中,若拋物線與關于y軸對稱,則符合條件的m,n的值為()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-2二、填空題(每小題3分,共24分)11.已知點A(-3,m)與點B(2,n)是直線y=-x+b上的兩點,則m與n的大小關系是___.12.已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結論:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0;⑤b2>4ac;⑥當x>1時,y隨x的增大而減?。渲姓_的說法有_____(寫出正確說法的序號)13.不透明布袋里有5個紅球,4個白球,往布袋里再放入x個紅球,y個白球,若從布袋里摸出白球的概率為,則y與x之間的關系式是_____.14.在菱形中,周長為,,則其面積為______.15.在△ABC中,若∠A=30°,∠B=45°,AC=,則BC=_______.16.如果,那么銳角_________°.17.如圖,轉盤中6個扇形的面積相等,任意轉動轉盤1次,當轉盤停止轉動時,指針指向的數(shù)小于5的概率為_____.18.若拋物線與軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線的解析式是______.三、解答題(共66分)19.(10分)在矩形中,,,是射線上的點,連接,將沿直線翻折得.(1)如圖①,點恰好在上,求證:∽;(2)如圖②,點在矩形內,連接,若,求的面積;(3)若以點、、為頂點的三角形是直角三角形,則的長為.20.(6分)如圖,港口位于港口的南偏西方向,燈塔恰好在的中點處,一艘海輪位于港口的正南方向,港口的正東方向處,它沿正北方向航行到達處,側得燈塔在北偏西方向上.求此時海輪距離港口有多遠?21.(6分)如圖,為的直徑,、為上兩點,,,垂足為.直線交的延長線于點,連接.(1)判斷與的位置關系,并說明理由;(2)求證:.22.(8分)如圖,已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,-3).(1)求拋物線的解析式;(2)若點P(4,m)在拋物線上,求△PAB的面積.23.(8分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1,圖2,圖3中,是的中線,,垂足為點,像這樣的三角形均為“中垂三角形.設.(1)如圖1,當時,則_________,__________;(2)如圖2,當時,則_________,__________;歸納證明(3)請觀察(1)(2)中的計算結果,猜想三者之間的關系,用等式表示出來,并利用圖3證明你發(fā)現(xiàn)的關系式;拓展應用(4)如圖4,在中,分別是的中點,且.若,,求的長.24.(8分)車輛經(jīng)過某市收費站時,可以在4個收費通道A、B、C、D中,可隨機選擇其中的一個通過.(1)車輛甲經(jīng)過此收費站時,選擇A通道通過的概率是;(2)若甲、乙兩輛車同時經(jīng)過此收費站,請用列表法或樹狀圖法確定甲乙兩車選擇不同通道通過的概率.25.(10分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一個根,求a的值.26.(10分)如圖,拋物線與軸相交于兩點,點在點的右側,與軸相交于點.求點的坐標;在拋物線的對稱軸上有一點,使的值最小,求點的坐標;點為軸上一動點,在拋物線上是否存在一點,使以四點構成的四邊形為平行四邊形?若存在,求點的坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=,在直角三角形ACD中即可求得的值.【詳解】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=在直角三角形ACD中故選:B【點睛】本題考查的是網(wǎng)格中的銳角三角函數(shù),關鍵是創(chuàng)造直角三角形,盡可能的把直角三角形的頂點放在格點.2、A【分析】本題主要應用兩三角形相似判定定理,三邊對應成比例,分別對各選項進行分析即可得出答案.【詳解】解:已知給出的三角形的各邊分別為1、、,只有選項A的各邊為、2、與它的各邊對應成比例.故選:A.【點睛】本題考查三角形相似判定定理以及勾股定理,是基礎知識要熟練掌握.3、A【解析】當k>0時,雙曲線y=的兩支分別位于一、三象限,直線y=kx+k的圖象過一、二、三象限;當k<0時,雙曲線y=的兩支分別位于二、四象限,直線y=kx+k的圖象過二、三、四象限;由此可得,只有選項A符合要求,故選A.點睛:本題考查一次函數(shù),反比例函數(shù)中系數(shù)及常數(shù)項與圖象位置之間關系.反比例函數(shù)y=的圖象當k>0時,它的兩個分支分別位于第一、三象限;當k<0時,它的兩個分支分別位于第二、四象限.一次函數(shù)圖象與k、b的關系:①k>0,b>0時,圖像經(jīng)過一二三象限;②k>0,b<0,圖像經(jīng)過一三四象限;③k>0,b=0時,圖像經(jīng)過一三象限,并過原點;④k<0,b>0時,圖像經(jīng)過一二四象限;⑤k<0,b<0時,圖像經(jīng)過二三四象限;⑥k<0,b=0時,圖像經(jīng)過二四象限,并過原點.4、D【分析】利用一元二次方程解的定義對各選項分別進行判斷.【詳解】解:A、當x=﹣1時,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、當x=﹣1時,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、當x=﹣1時,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、當x=﹣1時,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故選:D.【點睛】本題考查一元二次方程的解即能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.5、D【分析】根據(jù)圓內接四邊形的性質,對角互補可知,∠D+∠BAC=180°,求出∠D,再利用圓周角定理即可得出.【詳解】解:∵四邊形ABDC為圓內接四邊形∴∠A+∠BDC=180°∵∠BDC=130°∴∠A=50°∴∠BOC=2∠A=100°故選:D.【點睛】本題考查了圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的性質是解題的關鍵.6、C【分析】根據(jù)完美點的概念令ax2+4x+c=x,即ax2+3x+c=0,由題意方程有兩個相等的實數(shù)根,求得4ac=9,再根據(jù)方程的根為=,從而求得a=-1,c=-,所以函數(shù)y=ax2+4x+c-=-x2+4x-3,根據(jù)函數(shù)解析式求得頂點坐標與縱坐標的交點坐標,根據(jù)y的取值,即可確定x的取值范圍.【詳解】解:令ax2+4x+c=x,即ax2+3x+c=0,

由題意,△=32-4ac=0,即4ac=9,

又方程的根為=,

解得a=-1,c=-,

故函數(shù)y=ax2+4x+c-=-x2+4x-3,

如圖,該函數(shù)圖象頂點為(2,1),與y軸交點為(0,-3),由對稱性,該函數(shù)圖象也經(jīng)過點(4,-3).由于函數(shù)圖象在對稱軸x=2左側y隨x的增大而增大,在對稱軸右側y隨x的增大而減小,且當0≤x≤m時,函數(shù)y=-x2+4x-3的最小值為-3,最大值為1,

∴2≤m≤4,

故選:C.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質以及根的判別式等知識,利用分類討論以及數(shù)形結合的數(shù)學思想得出是解題關鍵.7、D【分析】根據(jù)方程的系數(shù)結合根的判別式,即可得出△>0,由此即可得出原方程有兩個不相等的實數(shù)根.【詳解】解:4x2﹣3x+=0,這里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有兩個不相等的實數(shù)根,故選:D.【點睛】本題考查的知識點是根據(jù)一元二次方程根的判別式來判斷方程的解的情況,熟記公式是解此題的關鍵.8、C【分析】根據(jù)軸對稱圖形的概念判斷即可.【詳解】解:、不是軸對稱圖形,不合題意;、不是軸對稱圖形,不合題意;、是軸對稱圖形,符合題意;、不是軸對稱圖形,不合題意;故選:.【點睛】本題考查的是軸對稱圖形的概念,判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【解析】A.此圖形不是中心對稱圖形,不是軸對稱圖形,故A選項錯誤;B.此圖形是中心對稱圖形,也是軸對稱圖形,故B選項錯誤;C.此圖形不是中心對稱圖形,是軸對稱圖形,故D選項錯誤.D.此圖形是中心對稱圖形,不是軸對稱圖形,故C選項正確;故選D.10、D【解析】由兩拋物線關于y軸對稱,可知兩拋物線的對稱軸也關于y軸對稱,與y軸交于同一點,由此可得二次項系數(shù)與常數(shù)項相同,一次項系數(shù)互為相反數(shù),由此可得關于m、n的方程組,解方程組即可得.【詳解】關于y軸對稱,二次項系數(shù)與常數(shù)項相同,一次項系數(shù)互為相反數(shù),∴,解之得,故選D.【點睛】本題考查了關于y軸對稱的拋物線的解析式間的關系,弄清系數(shù)間的關系是解題的關鍵.二、填空題(每小題3分,共24分)11、m>n【分析】先根據(jù)直線的解析式判斷出函數(shù)的增減性,再根據(jù)一次函數(shù)的性質即可得出結論.【詳解】∵直線y=?x+b中,k=?<0,∴此函數(shù)y隨著x增大而減小.∵?3<2,∴m>n.故填:m>n.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,熟知一次函數(shù)的增減性是解答此題的關鍵.12、②④⑤⑥【分析】①利用拋物線開口方向得到a<0,利用拋物線的對稱軸在y軸的右側得到b>0,利用拋物線與y軸的交點在x軸上方得到c>0,即可判斷;②利用0<﹣<1得到b<﹣2a,則可對其進行判斷;③利用x=﹣1時y的正負可對a﹣b+c進行判斷;④利用a+c>b>0可對其進行判斷;⑤根據(jù)拋物線與x軸交點的個數(shù)即可判斷;⑥根據(jù)二次函數(shù)的圖象和性質即可得出答案.【詳解】解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴a、b異號,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①錯誤;∵拋物線的對稱軸為直線x=﹣,∴0<﹣<1,∴b<﹣2a,即2a+b<0,所以②正確;∵x=﹣1時,y>0,∴a﹣b+c>0,所以③錯誤;∴a+c>b,而b>0,∴a+c>0,所以④正確;∵拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,所以⑤正確;∵拋物線開口向下,在對稱軸的右側y隨x的增大而減下,∴當x>1時,y隨x的增大而減小,所以⑥正確.故答案為:②④⑤⑥.【點睛】本題主要考查二次函數(shù)的圖象及性質,掌握二次函數(shù)的圖象及性質并數(shù)形結合是解題的關鍵.13、x﹣2y=1.【分析】根據(jù)從布袋里摸出白球的概率為,列出=,整理即可得.【詳解】根據(jù)題意得=,整理,得:x﹣2y=1,故答案為:x﹣2y=1.【點睛】本題考查概率公式的應用,熟練掌握概率公式建立方程是解題的關鍵.14、8【分析】根據(jù)已知求得菱形的邊長,再根據(jù)含的直角三角形的性質求出菱形的高,從而可求菱形的面積.【詳解】解:如圖,作AE⊥BC于E,∵菱形的周長為,∴AB=BC=4,∵,∴AE==2,∴菱形的面積=.故答案是:8.【點睛】此題主要考查了菱形的性質,利用含的直角三角形的性質求出菱形的高是解題的關鍵.15、【分析】作CD⊥AB于點D,先在Rt△ACD中求得CD的長,再解Rt△BCD即得結果.【詳解】如圖,作CD⊥AB于點D:,∠A=30°,,得,,∠B=45°,,解得考點:本題考查的是解直角三角形點評:解答本題的關鍵是作高,構造直角三角形,正確把握公共邊CD的作用.16、30【分析】根據(jù)特殊角的三角函數(shù)值即可得出答案.【詳解】∵∴故答案為30【點睛】本題主要考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關鍵.17、【解析】試題解析:∵共6個數(shù),小于5的有4個,∴P(小于5)==.故答案為.18、【分析】先根據(jù)定弦拋物線的定義求出定弦拋物線的表達式,再按圖象的平移規(guī)律平移即可.【詳解】∵某定弦拋物線的對稱軸為直線∴某定弦拋物線過點∴該定弦拋物線的解析式為將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線的解析式是即故答案為:.【點睛】本題主要考查二次函數(shù)圖象的平移,能夠求出定弦拋物線的表達式并掌握平移規(guī)律是解題的關鍵.三、解答題(共66分)19、(1)見解析;(2)的面積為;(3)、5、1、【分析】(1)先說明∠CEF=∠AFB和,即可證明∽;(2)過點作交與點,交于點,則;再結合矩形的性質,證得△FGE∽△AHF,得到AH=5GF;然后運用勾股定理求得GF的長,最后運用三角形的面積公式解答即可;(3)分點E在線段CD上和DC的延長線上兩種情況,然后分別再利用勾股定進行解答即可.【詳解】(1)解:∵矩形中,∴由折疊可得∵∴∴在和中∵,∴∽(2)解:過點作交與點,交于點,則∵矩形中,∴由折疊可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面積為(3)設DE=x,以點E、F、C為頂點的三角形是直角三角形,則:①當點E在線段CD上時,∠DAE<45°,∴∠AED>45°,由折疊性質得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,當∠EFC=90°時,如圖所示:由折疊性質可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴點A,F(xiàn),C在同一條線上,即:點F在矩形的對角線AC上,在Rt△ACD中,AD=5,CD=AB=3,根據(jù)勾股定理得,AC=,由折疊可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(-5)2=(3-x)2,解得x=即:DE=b,當∠ECF=90°時,如圖所示:點F在BC上,由折疊知,EF=DE=x,AF=AD=5,在Rt△ABF中,根據(jù)勾股定理得,BF==4,∴CF=BC-BF=1,在Rt△ECF中,根據(jù)勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=,即:DE=;②當點E在DC延長線上時,CF在∠AFE內部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、當∠CEF=90°時,如圖所示由折疊知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四邊形AFED是正方形,∴DE=AF=5;b、當∠ECF=90°時,如圖所示:∵∠ABC=∠BCD=90°,∴點F在CB的延長線上,∴∠ABF=90°,由折疊知,EF=DE=x,AF=AD=5,在Rt△ABF中,根據(jù)勾股定理得,BF==4,∴CF=BC+BF=9,在Rt△ECF中,根據(jù)勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=1,即DE=1,故答案為、、5、1.【點睛】本題屬于相似形綜合題,主要考查了相似三角形的判定和性質、折疊的性質、勾股定理等知識點,正確作出輔助線構造相似三角形和直角三角形是解答本題的關鍵.20、海輪距離港口的距離為【分析】過點C作CF⊥AD于點F,設CF=x,根據(jù)正切的定義用x表示出AF,根據(jù)等腰直角三角形的性質用x表示出EF,根據(jù)三角形中位線定理列出方程,解方程得到答案.【詳解】解:如圖,過點作于點.設,表示出利用,求出列方程:求出求出答:海輪距離港口的距離為.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.21、(1)EF與⊙O相切,理由見解析;(2)證明見解析.【分析】(1)連接OC,由題意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切線;(2)連接BC,根據(jù)直徑所對圓周角是直角證得△ACF∽△ABC,即可證得結論.【詳解】(1)EF與⊙O相切,理由如下:如圖,連接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切線;(2)連接BC,∵AB為直徑,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【點睛】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,相似三角形的判定和性質,熟練運用切線的判定和性質是本題的關鍵.22、(1)y=;(2)3【分析】(1)利用交點式得出y=a(x-1)(x-3),進而得出a的值即可.(2)把代入,求出P點的縱坐標,再利用三角形的面積公式求解即可.【詳解】解:(1)∵拋物線與軸交于點,∴設拋物線解析式為∵過點∴∴拋物線解析式為.(2)∵點在拋物線上∴∴.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式及利用三角形的面積公式求解,解題的關鍵是:巧設交點式,利用待定系數(shù)法求出二次函數(shù)表達式.23、(1),;(2),;(3),證明見解析;(4)【分析】(1)根據(jù)三角形的中位線得出;,進而得到計算即可得出答案;(2)連接EF,中位線的性質以及求出AP、BP、EP和FP的長度再根據(jù)勾股定理求出AE和BF的長度即可得出答案;(3)連接EF,根據(jù)中位線的性質得出,根據(jù)勾股定理求出AE與AP和EP的關系以及BF與BP和FP的關系,即可得出答案;(4)取的中點,連接,結合題目求出四邊形是平行四邊形得出AP=FP即可得到是“中垂三角形”,根據(jù)第三問得出的結論代入,即可得出答案(連接,交于點,證明求得是的中線,進而得出是“中垂三角形”,再結合第三問得出的結論計算即可得出答案).【詳解】解:(1)∵是的中線,∴是的中位線,∴,且,易得.∵,∴,∴.由勾股定理,得,∴.(2)如圖2,連結.∵是的中線,∴是的中位線,∴,且,易得..∵,∴,∴.由勾股定理,得,∴.(3)之間的關系是.證明如下:如圖3,連結.∵是的中線,∴是的中位線.∴,且,易得.在和中,∵,,∴.∴.∴,即.(4)解法1:設的交點為.如圖4,取的中點,連接.∵分別是的中點,是的中點,∴.又∵,∴.∵四邊形是平行四邊形,∴,∴,∴四邊形是平行四邊形,∴,∴是“中垂三角形”,∴,即,解得.(另:連接,交于點,易得是“中垂三角形”,解法類似于解法1,如圖5)解法2:如圖6,連接,延長交的延長線于點.在中,∵分別是的中點,∴.∵,∴.又∵四邊形為平行四邊形,∴,易得,∴,∴,∴是的中線,∴是“中垂三角形”,∴.∵,∴.∴,解得.∵是的中位線,∴.【點睛】本題考查的是相似三角形的判定與性質、勾股定理以及全等三角形的判定與性質,注意類比思想在本題中的應用,第四問方法一得出是解決本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論