安徽省宣城市中學2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第1頁
安徽省宣城市中學2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第2頁
安徽省宣城市中學2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第3頁
安徽省宣城市中學2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第4頁
安徽省宣城市中學2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,則tan∠ABC的值為()A. B. C. D.12.當函數(shù)是二次函數(shù)時,a的取值為()A. B. C. D.3.下列各組圖形中,一定相似的是()A.任意兩個圓B.任意兩個等腰三角形C.任意兩個菱形D.任意兩個矩形4.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結論錯誤的是()A.AEEC=BEED B.AE5.口袋中有2個紅球和1個黑球,每次摸到后放回,兩次都摸到紅球的概率為()A. B. C. D.6.在一幅長60cm、寬40cm的長方形風景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個掛圖的面積是2816cm2,設金色紙邊的寬為xcm,那么x滿足的方程是()A.(60+2x)(40+2x)=2816B.(60+x)(40+x)=2816C.(60+2x)(40+x)=2816D.(60+x)(40+2x)=28167.一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根8.一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些小球除顏色外都相同,其中有紅球3個,黃球2個,藍球若干,已知隨機摸出一個球是紅球的概率是,則隨機摸出一個球是藍球的概率是()A. B. C. D.9.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm10.已知點E在半徑為5的⊙O上運動,AB是⊙O的一條弦且AB=8,則使△ABE的面積為8的點E共有()個.A.1 B.2 C.3 D.4二、填空題(每小題3分,共24分)11.若關于x的一元二次方程有一個根為0,則m的值等于___.12.如圖,在四邊形中,,,,分別為,的中點,連接,,.,平分,,的長為__.13.一組數(shù)據(jù):﹣1,3,2,x,5,它有唯一的眾數(shù)是3,則這組數(shù)據(jù)的中位數(shù)是__.14.在△ABC中,∠B=45°,∠C=75°,AC=2,則BC的值為_____.15.《九章算術》是東方數(shù)學思想之源,該書中記載:“今有勾八步,股一十五步,問勾中容圓徑幾何.”其意思為:“今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形內(nèi)切圓的直徑是多少步.”該問題的答案是________步.16.如圖,在矩形中,是上的點,點在上,要使與相似,需添加的一個條件是_______(填一個即可).17.已知是關于的一元二次方程的兩個實數(shù)根,則=____.18.反比例函數(shù)()的圖象如圖所示,點為圖象上的一點,過點作軸,軸,若四邊形的面積為4,則的值為______.三、解答題(共66分)19.(10分)已知:如圖,在半徑為的中,、是兩條直徑,為的中點,的延長線交于點,且,連接。.(1)求證:;(2)求的長.20.(6分)如圖,⊙O的直徑AB與弦CD相交于點E,且DE=CE,⊙O的切線BF與弦AD的延長線交于點F.(1)求證:CD∥BF;(2)若⊙O的半徑為6,∠A=35°,求的長.21.(6分)用適當?shù)姆椒ń庀铝幸辉畏匠蹋海?);(2).22.(8分)如圖,AB∥CD,AC與BD的交點為E,∠ABE=∠ACB.(1)求證:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的長.23.(8分)國家計劃2035年前實施新能源汽車,某公司為加快新舊動能轉換,提高公司經(jīng)濟效益,決定對近期研發(fā)出的一種新型能源產(chǎn)品進行降價促銷.根據(jù)市場調(diào)查:這種新型能源產(chǎn)品銷售單價定為200元時,每天可售出300個;若銷售單價每降低1元,每天可多售出5個.已知每個新型能源產(chǎn)品的成本為100元.問:(1)設該產(chǎn)品的銷售單價為元,每天的利潤為元.則_________(用含的代數(shù)式表示)(2)這種新型能源產(chǎn)品降價后的銷售單價為多少元時,公司每天可獲利32000元?24.(8分)(1)計算:|﹣1|+2sin45°﹣+tan260°;(2)已知:,求.25.(10分)如圖,無人機在空中處測得地面、兩點的俯角分別為60?、45?,如果無人機距地面高度米,點、、在同水平直線上,求、兩點間的距離.(結果保留根號)26.(10分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.(1)求證:∠ACF=∠ABD;(2)連接EF,求證:EF?CG=EG?CB.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)網(wǎng)格結構找出∠ABC所在的直角三角形,然后根據(jù)銳角的正切等于對邊比鄰邊列式即可.【詳解】解:∠ABC所在的直角三角形的對邊是3,鄰邊是4,所以,tan∠ABC=.故選B.【點睛】本題考查了銳角三角函數(shù)的定義,熟練掌握網(wǎng)格結構找出直角三角形是解題的關鍵.2、D【分析】由函數(shù)是二次函數(shù)得到a-1≠0即可解題.【詳解】解:∵是二次函數(shù),∴a-1≠0,解得:a≠1,故選你D.【點睛】本題考查了二次函數(shù)的概念,屬于簡單題,熟悉二次函數(shù)的定義是解題關鍵.3、A【分析】根據(jù)相似圖形的性質(zhì),對各選項分析判斷即可得出答案.【詳解】A、任意兩個圓,一個圓放大或縮小后能夠與另外一個圓重合,所以任意兩個圓一定是相似圖形,故選A.B、任意兩個等腰三角形,對應邊不一定成比例,對應角不一定相等,所以不一定相似,故本選項錯誤.C、任意兩個菱形,對應邊成比例,但對應角不一定相等,所以不一定相似,故本選項錯誤.D、任意兩個矩形,對應邊不一定成比例,對應角都是直角,一定相等,所以也不一定相似,故本選項錯誤.故選A.【點睛】本題考查了相似圖形的概念,靈活運用相似圖形的性質(zhì)是解題的關鍵.4、A【解析】利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.5、D【分析】根據(jù)題意畫出樹形圖即可求出兩次都摸到紅球的概率,進而得出選項.【詳解】解:設紅球為1,黑球為2,畫樹形圖得:由樹形圖可知:兩次都摸到紅球的概率為.故選:D.【點睛】本題考查用列表法與樹狀圖法求隨機事件的概率,列舉法(樹形圖法)求概率的關鍵在于列舉出所有可能的結果,列表法是一種,但當一個事件涉及三個或更多元素時,為不重不漏地列出所有可能的結果,通常采用樹形圖.6、A【解析】根據(jù)題意可知,掛畫的長和寬分別為(60+2x)cm和(40+2x)cm,據(jù)此可列出方程(60+2x)(40+2x)=2816【詳解】若設金色紙邊的寬為xcm,則掛畫的長和寬分別為(60+2x)cm和(40+2x)cm,可列方程(60+2x)(40+2x)=2816故答案為A.【點睛】本題考查一元二次方程的應用,找出題中的等量關系是解題關鍵.7、A【分析】先化成一般式后,在求根的判別式,即可確定根的狀況.【詳解】解:原方程可化為:,,,,,方程由兩個不相等的實數(shù)根.故選A.【點睛】本題運用了根的判別式的知識點,把方程轉化為一般式是解決問題的關鍵.8、D【分析】先求出口袋中藍球的個數(shù),再根據(jù)概率公式求出摸出一個球是藍球的概率即可.【詳解】設口袋中藍球的個數(shù)有x個,根據(jù)題意得:=,解得:x=4,則隨機摸出一個球是藍球的概率是=;故選:D.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、C【解析】利用扇形的弧長公式可得扇形的弧長;根據(jù)扇形的弧長=圓錐的底面周長,讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高:∵扇形的弧長=cm,圓錐的底面半徑為4π÷2π=2cm,∴這個圓錐形筒的高為cm.故選C.10、C【分析】根據(jù)△ABC的面積可將高求出,即⊙O上的點到AB的距離為高長的點都符合題意.【詳解】過圓心向弦AB作垂線,再連接半徑.設△ABE的高為h,由可求.由圓的對稱性可知,有兩個點符合要求;又弦心距=.∵3+2=5,故將弦心距AB延長與⊙O相交,交點也符合要求,故符合要求的點有3個.故選C.考點:(1)垂徑定理;(2)勾股定理.二、填空題(每小題3分,共24分)11、m=-1【解析】把0代入方程有:,∴m1=1,m2=-1.∵m?1≠0∴m=1(舍去)故m=-1.12、.【分析】根據(jù)三角形中位線定理得MN=AD,根據(jù)直角三角形斜邊中線定理得BM=AC,由此即可證明BM=MN.再證明∠BMN=90°,根據(jù)BN2=BM2+MN2即可解決問題.【詳解】在中,、分別是、的中點,,,在中,是中點,,,,,平分,,,,,,,,,.故答案為.【點睛】本題考查了三角形中位線定理、直角三角形斜邊中線定理、勾股定理等知識,解題的關鍵是靈活應用:三角形的中位線平行于第三邊,并且等于第三邊的一半.13、1【解析】先根據(jù)數(shù)據(jù)的眾數(shù)確定出x的值,即可得出結論.【詳解】∵一組數(shù)據(jù):﹣1,1,2,x,5,它有唯一的眾數(shù)是1,∴x=1,∴此組數(shù)據(jù)為﹣1,2,1,1,5,∴這組數(shù)據(jù)的中位數(shù)為1.故答案為1.【點睛】本題考查了數(shù)據(jù)的中位數(shù),眾數(shù)的確定,掌握中位數(shù)和眾數(shù)的確定方法是解答本題的關鍵.14、【分析】構造直角三角形,利用銳角三角函數(shù)及三角形的邊角關系求解.【詳解】解:如圖所示,過點C作CD⊥AB,垂足為D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案為.【點睛】本題考查了特殊角的三角函數(shù)值及直角三角形的邊角間關系,構造直角三角形是解決本題的關鍵.15、1【分析】根據(jù)勾股定理求出直角三角形的斜邊,根據(jù)直角三角形的內(nèi)切圓的半徑的求法確定出內(nèi)切圓半徑,得到直徑.【詳解】解:根據(jù)勾股定理得:斜邊為=17,設內(nèi)切圓半徑為r,由面積法r=3(步),即直徑為1步,

故答案為:1.考點:三角形的內(nèi)切圓與內(nèi)心.16、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一個即可)【分析】根據(jù)相似三角形的判定解答即可.【詳解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案為:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【點睛】此題考查相似三角形的判定,關鍵是根據(jù)相似三角形的判定方法解答.17、-3【分析】欲求的值,根據(jù)一元二次方程根與系數(shù)的關系,求得兩根的和與積,代入數(shù)值計算即可.【詳解】解:根據(jù)題意x1+x2=2,x1?x2=-4,===-3.故答案為:-3.【點睛】本題考查了一元二次方程根與系數(shù)的關系,將根與系數(shù)的關系與代數(shù)式變形相結合解題是經(jīng)常使用的一種解題方法.18、4【分析】根據(jù)反比例函數(shù)的性質(zhì)得出,再結合圖象即可得出答案.【詳解】表示的是x與y的坐標形成的矩形的面積反比例函數(shù)()的圖象在第一象限故答案為:4.【點睛】本題考查了反比例函數(shù)的性質(zhì),反比例函數(shù)中,的絕對值表示的是x與y的坐標形成的矩形的面積.三、解答題(共66分)19、(1)證明見解析;(1)EM=4.【解析】(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結論,根據(jù)圓周角定理可推出它們的對應角相等,即可得△AMC∽△EMB;(1)根據(jù)圓周角定理,結合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結合(1)的結論,很容易就可求出EM的長度.【詳解】(1)連接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM?BM=EM?CM;(1)∵DC是⊙O的直徑,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC為正數(shù),∴EC=2.∵M為OB的中點,∴BM=1,AM=3.∵AM?BM=EM?CM=EM?(EC﹣EM)=EM?(2﹣EM)=11,且EM>MC,∴EM=4.【點睛】本題考查了相似三角形的判定和性質(zhì)、圓周角定理、勾股定理的知識點,解答本題的關鍵是根據(jù)已知條件和圖形作輔助線.20、(1)見解析;(2)【分析】(1)根據(jù)垂徑定理、切線的性質(zhì)求出AB⊥CD,AB⊥BF,即可證明;(2)根據(jù)圓周角定理求出∠COD,根據(jù)弧長公式計算即可.【詳解】(1)證明:∵AB是⊙O的直徑,DE=CE,∴AB⊥CD,∵BF是⊙O的切線,∴AB⊥BF,∴CD∥BF;(2)解:連接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的長為:=.【點睛】本題考查的是切線的性質(zhì)、垂徑定理、弧長的計算,掌握切線的性質(zhì)定理、垂徑定理和弧長的計算公式是解題的關鍵.21、(1);(2)【分析】(1)利用提取公因式的方法因式分解,然后解一元二次方程即可;(2)利用平方差公式分解因式,然后解一元二次方程即可.【詳解】(1)原方程變形為,或,解得;(2)原方程變形為:,即,或,解得.【點睛】本題主要考查解一元二次方程,掌握因式分解法是解題的關鍵.22、(1)詳見解析;(2)AC=9,CD=.【分析】(1)根據(jù)相似三角形的判定證明即可;(2)利用相似三角形的性質(zhì)解答即可.【詳解】證明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴,∴AB2=AC?AE,∵AB=6,AE=4,∴AC=,∵AB∥CD,∴△CDE∽△ABE,∴,∴.【點睛】此題考查相似三角形的判定和性質(zhì),關鍵是根據(jù)相似三角形的判定證明△ABE∽△ACB.23、(1)或;(2)當銷售單價為180元時,公司每天可獲利32000元.【分析】(1)根據(jù)總利潤=單件利潤銷量,用的代數(shù)式分別表示兩個量,構建方程即可;(2)由(1)所得的函數(shù),當時,解一元二次方程即可求得答案.【詳解】(1)依題意得:(2)公司每天可獲利32000元,即,則,化簡得:,解得:,答:當銷售單價為180元時,公司每天可獲利32000元.【點睛】本題主要考查二次函數(shù)的應用、一元二次方程的解法,理解題意找到題目蘊含的相等關系列出方程是解題的關鍵.24、(1)2;(2)【分析】(1)利用絕對值的意義、特殊角的三角函數(shù)值和二次根式的性質(zhì)進行計算,再合并即可;

(2)先根據(jù)分式的除法將所求式子進行變形,再將已知式子的值代入即可得出結果.【詳解】解:(1)原式=﹣1+2×﹣2+()2=﹣1+﹣2+3=2;(2)∵,∴.【點睛】本題考查了特殊角的三角函數(shù)值、二次根式的混合運算以及比例的性質(zhì)和分式的除法法則,掌握基本運算法則,能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論