版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知是關于的反比例函數(shù),則()A. B. C. D.為一切實數(shù)2.若一次函數(shù)y=ax+b(a≠0)的圖像與x軸交點坐標為(2,0),則拋物線y=ax2+bx+c的對稱軸為()A.直線x=1 B.直線x=-1 C.直線x=2 D.直線x=-23.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±14.如圖,是的切線,切點分別是.若,則的長是()A.2 B.4 C.6 D.85.如圖,在△ABC中,點D、E分別在AB、AC上,DE∥BC.若AD=6,DB=3,則的值為()A. B. C. D.26.如圖,Rt△ABC中,∠C=90°,∠B=30°,分別以點A和點B為圓心,大于的長為半徑作弧,兩弧相交于M、N兩點,作直線MN,交BC于點D,連接AD,則∠CAD的度數(shù)是()A.20° B.30° C.45° D.60°7.如圖,正方形AEFG的邊AE放置在正方形ABCD的對角線AC上,EF與CD交于點M,得四邊形AEMD,且兩正方形的邊長均為2,則兩正方形重合部分(陰影部分)的面積為()A.﹣4+4 B.4+4 C.8﹣4 D.+18.拋物線y=﹣3(x﹣1)2+3的頂點坐標是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)9.若,相似比為1:2,則與的面積的比為()A.1:2 B.2:1 C.1:4 D.4:110.若,那么的值是()A. B. C. D.11.如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有()A.1個 B.2個 C.3個 D.4個12.如圖,在平面直角坐標系中,一次函數(shù)y=-4x+4的圖像與x軸,y軸分別交于A,B兩點,正方形ABCD的頂點C,D在第一象限,頂點D在反比例函數(shù)的圖像上,若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖像上,則n的值是()A.2 B.3 C.4 D.5二、填空題(每題4分,共24分)13.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.14.已知關于x的方程的一個根為2,則這個方程的另一個根是▲.15.如圖,為正五邊形的一條對角線,則∠=_____________.16.一個周長確定的扇形,要使它的面積最大,扇形的圓心角應為______度.17.把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊與的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________.18.如圖,∠C=∠E=90°,AC=3,BC=4,AE=2,則AD=_________.三、解答題(共78分)19.(8分)如圖,在由12個小正方形構(gòu)造成的網(wǎng)格圖(每個小正方形的邊長均為1)中,點A,B,C.(1)畫出△ABC繞點B順時針旋轉(zhuǎn)90°后得到的△A1B1C1;(2)若點D,E也是網(wǎng)格中的格點,畫出△BDE,使得△BDE與△ABC相似(不包括全等),并求相似比.20.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達式;(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?21.(8分)甲、乙、丙三個球迷決定通過抓鬮來決定誰得到僅有的一張球票.他們準備了三張紙片,其中一張上畫了個五星,另兩張空白,團成外觀一致的三個紙團.抓中畫有五角星紙片的人才能得到球票.剛要抓鬮,甲問:“誰先抓?先抓的人會不會抓中的機會比別人大?”你認為他的懷疑有沒有道理?談談你的想法并用列表或畫樹狀圖方法說明原因.22.(10分)如圖,內(nèi)接于,是的直徑,是上一點,弦交于點,弦于點,連接,,且.(1)求證:;(2)若,,求的長.23.(10分)“互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞,某網(wǎng)店專售一款休閑褲,其成本為每條40元,當售價為每條80元時,每月可售價100條.為了吸引更多顧客,該網(wǎng)店采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降元,則每月可多銷售5條.設每條褲子的售價為元(為正整數(shù)),每月的銷售量為條.(1)直接寫出與的函數(shù)關系式;(2)設該網(wǎng)店每月獲得的利潤為元,當銷售單價為多少元時,每月獲得的利潤最大,最大利潤是多少?(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學生,為了保證捐款后每月利潤不低于3800元,且讓消費者得到最大的實惠,該如何確定休閑褲的銷售單價?24.(10分)問題提出:如圖所示,有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.a(chǎn).每次只能移動1個金屬片;b.較大的金屬片不能放在較小的金屬片上面.把個金屬片從1號針移到3號針,最少移動多少次?問題探究:為了探究規(guī)律,我們采用一般問題特殊化的方法,先從簡單的情形入手,再逐次遞進,最后得出一般性結(jié)論.探究一:當時,只需把金屬片從1號針移到3號針,用符號表示,共移動了1次.探究二:當時,為了避免將較大的金屬片放在較小的金屬片上面,我們利用2號針作為“中間針”,移動的順序是:a.把第1個金屬片從1號針移到2號針;b.把第2個金屬片從1號針移到3號針;c.把第1個金屬片從2號針移到3號針.用符號表示為:,,.共移動了3次.探究三:當時,把上面兩個金屬片作為一個整體,則歸結(jié)為的情形,移動的順序是:a.把上面兩個金屬片從1號針移到2號針;b.把第3個金屬片從1號針移到3號針;c.把上面兩個金屬片從2號針移到3號針.其中(1)和(3)都需要借助中間針,用符號表示為:,,,,,,.共移動了7次.(1)探究四:請仿照前面步驟進行解答:當時,把上面3個金屬片作為一個整體,移動的順序是:___________________________________________________.(2)探究五:根據(jù)上面的規(guī)律你可以發(fā)現(xiàn)當時,需要移動________次.(3)探究六:把個金屬片從1號針移到3號針,最少移動________次.(4)探究七:如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,當時如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,那么與的關系是__________.25.(12分)如圖,在中,,分別是,上的點,且,連接,,.(1)求證:四邊形是平行四邊形;(2)若平分,,,,求的長.26.已知關于x的方程2x2﹣17x+m=0的一個根是1,求它的另一個根及m的值.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)題意得,,即可解得m的值.【詳解】∵是關于的反比例函數(shù)∴解得故答案為:B.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及定義,掌握反比例函數(shù)的指數(shù)等于是解題的關鍵.2、A【分析】先將(2,0)代入一次函數(shù)解析式y(tǒng)=ax+b,得到2a+b=0,即b=-2a,再根據(jù)拋物線y=ax2+bx+c的對稱軸為直線x=即可求解.【詳解】解:∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(2,0),
∴2a+b=0,即b=-2a,
∴拋物線y=ax2+bx+c的對稱軸為直線x=.
故選:A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征及二次函數(shù)的性質(zhì),難度適中.用到的知識點:
點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式,二次函數(shù)y=ax2+bx+c的對稱軸為直線x=.3、C【解析】根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.4、D【分析】因為AB、AC、BD是的切線,切點分別是P、C、D,所以AP=AC、BD=BP,所以.【詳解】解:∵是的切線,切點分別是.∴,∴,∵,∴.故選D.【點睛】本題考查圓的切線的性質(zhì),解題的關鍵是掌握切線長定理.5、A【分析】先求出AB,由平行線分線段成比例定理得出比例式,即可得出結(jié)果.【詳解】∵,
∴,
∵,
∴;
故選:A.【點睛】本題考查了平行線分線段成比例定理;熟記平行線分線段成比例定理是解決問題的關鍵.6、B【分析】根據(jù)內(nèi)角和定理求得∠BAC=60°,由中垂線性質(zhì)知DA=DB,即∠DAB=∠B=30°,從而得出答案.【詳解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作圖可知MN為AB的中垂線,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故選B.【點睛】本題主要考查作圖-基本作圖,熟練掌握中垂線的作圖和性質(zhì)是解題的關鍵.7、A【解析】試題分析:∵四邊形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,則S△ACD=AD?CD=×2×2=2;AC=AD=2,則EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME?EC=(2﹣2)2=6﹣1,∴陰影部分的面積=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故選A.考點:正方形的性質(zhì).8、D【分析】直接根據(jù)頂點式的特點求頂點坐標.【詳解】解:∵y=﹣3(x﹣1)2+3是拋物線的頂點式,∴頂點坐標為(1,3).故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標為(h,k).9、C【解析】試題分析:直接根據(jù)相似三角形面積比等于相似比平方的性質(zhì).得出結(jié)論:∵,相似比為1:2,∴與的面積的比為1:4.故選C.考點:相似三角形的性質(zhì).10、A【分析】根據(jù),可設a=2k,則b=3k,代入所求的式子即可求解.【詳解】∵,∴設a=2k,則b=3k,則原式==.故選:A.【點睛】本題考查了比例的性質(zhì),根據(jù),正確設出未知數(shù)是本題的關鍵.11、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又點F為BC的中點,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正確;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正確;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等邊三角形,故④正確;由題給條件,證不出CM=DM,故①錯誤.故正確的有②③④,共3個.故選C.12、B【分析】由一次函數(shù)的關系式可以求出與x軸和y軸的交點坐標,即求出OA,OB的長,由正方形的性質(zhì),三角形全等可以求出DE、AE、CF、BF的長,進而求出G點的坐標,最后求出CG的長就是n的值.【詳解】如圖過點D、C分別做DE⊥x軸,CF⊥y軸,垂足分別為E,F.CF交反比例函數(shù)的圖像于點G.把x=0和y=0分別代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易證△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(xiàn)(0,5)把D點坐標代入反比例函數(shù)y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案為B.【點睛】本題考查了反比例函數(shù)的圖像上的坐標特征,正方形的性質(zhì),以及全等三角形判斷和性質(zhì),根據(jù)坐標求出線段長是解決問題的關鍵.二、填空題(每題4分,共24分)13、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉(zhuǎn)換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.14、-1.【解析】∵方程的一個根為2,設另一個為a,∴2a=-6,解得:a=-1.15、36°【解析】360°÷5=72°,180°-72°=108°,所以,正五邊形每個內(nèi)角的度數(shù)為108°,即可知∠A=108°,又知△ABE是等腰三角形,則∠ABE=(180°-108°)=36°.16、【分析】設扇形的弧長,然后,建立關系式,結(jié)合二次函數(shù)的圖象與性質(zhì)求解最值即可.【詳解】設扇形面積為S,半徑為r,圓心角為α,則扇形弧長為a-2r,所以S=(a-2r)r=-(r-)2+.故當r=時,扇形面積最大為.∴∴此時,扇形的弧長為2r,∴,∴故答案為:.【點睛】本題重點考查了扇形的面積公式、弧長公式、二次函數(shù)的最值等知識,屬于基礎題.17、【分析】兩塊三角板的邊與的交點所走過的路程,需分類討論,由圖①的點運動到圖②的點,由圖②的點運動到圖③的點,總路程為,分別求解即可.【詳解】如圖,兩塊三角板的邊與的交點所走過的路程,分兩步走:(1)由圖①的點運動到圖②的點,此時:AC⊥DE,點C到直線DE的距離最短,所以CF最短,則PF最長,根據(jù)題意,,,在中,∴;(2)由圖②的點運動到圖③的點,過G作GH⊥DC于H,如下圖,∵,且GH⊥DC,∴是等腰直角三角形,∴,設,則,∴,∴,解得:,即,點所走過的路程:,故答案為:【點睛】本題是一道需要把旋轉(zhuǎn)角的概念和解直角三角形相結(jié)合求解的綜合題,考查學生綜合運用數(shù)學知識的能力.正確確定點所走過的路程是解答本題的關鍵.18、.【解析】試題分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根據(jù)相似三角形的對應邊的比相等就可求出AD的長.試題解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=∴考點:1.相似三角形的判定與性質(zhì);2.勾股定理.三、解答題(共78分)19、(1)如圖1所示:△A1B1C1,即為所求;見解析;(1)如圖1所示:△BDE,即為所求,見解析;相似比為::1.【分析】(1)直接利用旋轉(zhuǎn)的性質(zhì)得出對應點位置進而得出答案;(1)直接利用相似圖形的性質(zhì)得出符合題意的答案.【詳解】(1)如圖1所示:△A1B1C1,即為所求;(1)如圖1所示:△BDE,即為所求,相似比為::1.【點睛】本題主要考查了相似變換以及旋轉(zhuǎn)變換,正確得出對應點位置是解題關鍵.20、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.21、甲的懷疑沒有道理,先抓后抓抓中的機會是一樣的,圖表見解析【分析】先正確畫出樹狀圖,根據(jù)樹狀圖求出每人抓到五星的概率即可解答.【詳解】答:甲的懷疑沒有道理,先抓后抓抓中的機會是一樣的.用樹狀圖列舉結(jié)果如下:從圖中發(fā)現(xiàn)無論三個人誰先抓鬮,抓到五星紙片的概率都是一樣的,各為.【點睛】本題考查了游戲的公平性:判斷游戲公平性需要先計算每個事件的概率,然后比較概率的大小,概率相等就公平,否則就不公平.22、(1)詳見解析;(2)【分析】(1)證法一:連接,利用圓周角定理得到,從而證明,然后利用同弧所對的圓周角相等及三角形外角的性質(zhì)得到,從而使問題得解;證法二:連接,,由圓周角定理得到,從而判定,得到,然后利用圓內(nèi)接四邊形對角互補可得,從而求得,使問題得解;(2)首先利用勾股定理和三角形面積求得AG的長,解法一:過點作于點,利用勾股定理求GH,CH,CD的長;解法二:過點作于點,利用AA定理判定,然后根據(jù)相似三角形的性質(zhì)列比例式求解.【詳解】(1)證法一:連接.∵為的直徑,∴,∴∵,∴∴∴.∵∴∵,∴∴.證法二:連接,.∵為的直徑,∴∵∴∴,∴∴∵∴∵∴∴∴∵四邊形內(nèi)接于,∴∴∴∴.(2)解:在中,,,,根據(jù)勾股定理得.連接,∵為的直徑,∴∴∴∵∴∵∴∴∴四邊形是平行四邊形.∴.在中,,∴解法一:過點作于點∴在中,,∴在中,∴在中,∴解法二:過點作于點∴∵∴∵∴四邊形為矩形∴.∵四邊形為平行四邊形,∴∴.∵,∴∴即∴【點睛】本題考查圓的綜合知識,相似三角形的判定和性質(zhì),勾股定理解直角三角形,綜合性較強,有一定難度.23、(1);(2)當銷售單價為70元時,最大利潤4500元;(3)銷售單價定為元.【分析】(1)根據(jù)降價1元,銷量增加5條,則降價元,銷量增加件,即可得出關系式;(2)根據(jù)總利潤=每條利潤×銷量,可建立函數(shù)關系式,再根據(jù)二次函數(shù)最值的求法得到最大利潤;(3)先求出利潤為(3800+200)元時的售價,取符合題意的價格即可.【詳解】解:(1)由題意可得:整理得(2)當時,即當銷售單價為70元時,最大利潤4500元.(3)由題意,得:解得:,拋物線開口向下,對稱軸為直線當時,符合該網(wǎng)店要求而為了讓顧客得到最大實惠,故當銷售單價定為元時,即符合網(wǎng)店要求,又能讓顧客得到最大實惠.【點睛】本題考查了二次函數(shù)的應用,熟練掌握銷售問題的等量關系建立二次函數(shù)模型是解題的關鍵.24、(1)當時,移動順序為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3),(4)【分析】根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到2柱,然后把最大的盤子移動到3柱,再用同樣的次數(shù)從2柱移動到3柱,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.【詳解】解:(1)當時,把上面3個金屬片作為一個整體,移動的順序是:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房租賃保證金退還協(xié)議4篇
- 2025年度智能設備價格信息保密及市場推廣協(xié)議4篇
- 2025年度廠房租賃合同附帶員工宿舍租賃條款4篇
- 二零二四唐山骨瓷品牌創(chuàng)新設計研發(fā)合作協(xié)議3篇
- 2025年度企業(yè)品牌策劃合同范本(十)4篇
- 2024年04月江蘇上海浦發(fā)銀行南京分行在線視頻筆試歷年參考題庫附帶答案詳解
- 2024美容美發(fā)店加盟合同
- 2025年茶葉出口基地承包經(jīng)營合同范本4篇
- 專項工程承攬協(xié)議樣本(2024年版)版B版
- 2024年03月浙江中國農(nóng)業(yè)銀行浙江省分行春季招考筆試歷年參考題庫附帶答案詳解
- 儲罐維護檢修施工方案
- 地理2024-2025學年人教版七年級上冊地理知識點
- 2024 消化內(nèi)科專業(yè) 藥物臨床試驗GCP管理制度操作規(guī)程設計規(guī)范應急預案
- 2024-2030年中國電子郵箱行業(yè)市場運營模式及投資前景預測報告
- 基礎設施零星維修 投標方案(技術方案)
- 人力資源 -人效評估指導手冊
- 大疆80分鐘在線測評題
- 2024屆廣東省廣州市高三上學期調(diào)研測試英語試題及答案
- 中煤平朔集團有限公司招聘筆試題庫2024
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 不付租金解除合同通知書
評論
0/150
提交評論