黑龍江省大慶杜爾伯特縣聯(lián)考2022-2023學年數(shù)學九年級第一學期期末檢測試題含解析_第1頁
黑龍江省大慶杜爾伯特縣聯(lián)考2022-2023學年數(shù)學九年級第一學期期末檢測試題含解析_第2頁
黑龍江省大慶杜爾伯特縣聯(lián)考2022-2023學年數(shù)學九年級第一學期期末檢測試題含解析_第3頁
黑龍江省大慶杜爾伯特縣聯(lián)考2022-2023學年數(shù)學九年級第一學期期末檢測試題含解析_第4頁
黑龍江省大慶杜爾伯特縣聯(lián)考2022-2023學年數(shù)學九年級第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,點M在某反比例函數(shù)的圖象上,且點M的橫坐標為,若點和在該反比例函數(shù)的圖象上,則與的大小關(guān)系為()A. B. C. D.無法確定2.如圖,已知ΔABC中,AE交BC于點D,∠C=∠E,AD:DE=2:3,AE=10,BD=5,則DC的長是()A. B. C. D.3.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)100°,得到△ADE.若點D在線段BC的延長線上,則∠B的大小為()A.30° B.40° C.50° D.60°4.如圖,已知直線a∥b∥c,直線m交直線a,b,c于點A,B,C,直線n交直線a,b,c于點D,E,F(xiàn),若,則=()A. B. C. D.15.攝影興趣小組的學生,將自己拍攝的照片向本組其他成員各贈送一張,全組共互贈了182張,若全組有x名學生,則根據(jù)題意列出的方程是()A.x(x+1)=182 B.0.5x(x+1)=182C.0.5x(x-1)=182D.x(x-1)=1826.如圖,在四邊形ABCD中,對角線AC與BD相交于點O,AC平分∠DAB,且∠DAC=∠DBC,那么下列結(jié)論不一定正確的是()A.△AOD∽△BOC B.△AOB∽△DOCC.CD=BC D.BC?CD=AC?OA7.如圖,在平面直角坐標系中,過格點A,B,C畫圓弧,則點B與下列格點連線所得的直線中,能夠與該圓弧相切的格點坐標是()A.(5,2) B.(2,4) C.(1,4) D.(6,2)8.如圖,在扇形中,∠,,則陰影部分的面積是()A. B.C. D.9.如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠BOD等于()A.20° B.30° C.40° D.60°10.如圖,二次函數(shù)的圖象經(jīng)過點,下列說法正確的是()A. B. C. D.圖象的對稱軸是直線11.在美術(shù)字中,有些漢字是中心對稱圖形,下面的漢字不是中心對稱圖形的是()A. B. C. D.12.如圖,小正方形的邊長均為1,則下列圖中的三角形(陰影部分)與相似的是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,矩形中,,將矩形按如圖所示的方式在直線上進行兩次旋轉(zhuǎn),則點在兩次旋轉(zhuǎn)過程中經(jīng)過的路徑的長是(結(jié)果保留)____________.14.點P(4,﹣6)關(guān)于原點對稱的點的坐標是_____.15.已知△ABC與△DEF相似,相似比為2:3,如果△ABC的面積為4,則△DEF的面積為_____.16.如圖,點D,E分別在AB、AC上,且∠ABC=∠AED.若DE=2,AE=3,BC=6,則AB的長為_____.17.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當FG∥AC時,BF的長為_____.18.如圖,從一塊直徑為的圓形紙片上剪出一個圓心角為的扇形,使點在圓周上.將剪下的扇形作為一個圓錐的側(cè)面,則這個圓錐的底面圓的半徑是________.三、解答題(共78分)19.(8分)已知,為⊙的直徑,過點的弦∥半徑,若.求的度數(shù).20.(8分)在平面直角坐標系中,的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).(1)畫出關(guān)于原點對稱的;(2)將繞順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的,并直接寫出此過程中線段掃過圖形的面積.(結(jié)果保留)21.(8分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.22.(10分)已知平行四邊形ABCD,對角線AC、BD交于點O,線段EF過點O交AD于點E,交BC于點F.求證:OE=OF.23.(10分)計算:24.(10分)某校綜合實踐小組要對一幢建筑物的高度進行測量.如圖,該小組在一斜坡坡腳處測得該建筑物頂端的仰角為,沿斜坡向上走到達處,(即)測得該建筑物頂端的仰角為.已知斜坡的坡度,請你計算建筑物的高度(即的長,結(jié)果保留根號).25.(12分)如圖,在8×8的正方形網(wǎng)格中,△AOB的頂點都在格點上.請在網(wǎng)格中畫出△OAB的一個位似圖形,使兩個圖形以點O為位似中心,且所畫圖形與△OAB的位似為2:1.26.已知菱形的兩條對角線長度之和為40厘米,面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.(1)請直接寫出S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(2)當x取何值時,菱形的面積最大,最大面積是多少?

參考答案一、選擇題(每題4分,共48分)1、A【分析】反比例函數(shù)在第一象限的一支y隨x的增大而減小,只需判斷a與2a的大小便可得出答案.【詳解】∵a<2a又∵反比例函數(shù)在第一象限的一支y隨x的增大而減小∴故選:A.【點睛】本題考查比較大小,需要用到反比例函數(shù)y與x的增減變化,本題直接讀圖即可得出.2、B【分析】根據(jù)∠C=∠E以及∠BDE=∠ADC,可以得到△BDE∽△ADC,由AD:DE=2:3,AE=10,可以求出AD和DE的值,再利用對應邊成比例,即可求出DC的長.【詳解】解:∵∠C=∠E,∠BDE=∠ADC∴△BDE∽△ADC∵AD:DE=2:3,AE=10∴AD=4,DE=6∴∴,解得:DC=故選B.【點睛】本題主要考查了相似三角形的判定和性質(zhì),熟練找出相似三角形以及列出對應邊成比例的式子是解決本題的關(guān)鍵.3、B【解析】∵△ADE是由△ABC繞點A旋轉(zhuǎn)100°得到的,∴∠BAD=100°,AD=AB,∵點D在BC的延長線上,∴∠B=∠ADB=.故選B.點睛:本題主要考察了旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì),解題中只要抓住旋轉(zhuǎn)角∠BAD=100°,對應邊AB=AD及點D在BC的延長線上這些條件,就可利用等腰三角形中:兩底角相等求得∠B的度數(shù)了.4、A【分析】由題意直接根據(jù)平行線分線段成比例定理進行分析即可求解.【詳解】解:∵a//b//c,∴=.故選:A.【點睛】本題考查平行線分線段成比例定理.注意掌握三條平行線截兩條直線,所得的對應線段成比例.5、D【解析】共送出照片數(shù)=共有人數(shù)×每人需送出的照片數(shù).根據(jù)題意列出的方程是x(x-1)=1.故選D.6、D【分析】直接利用相似三角形的判定方法分別分析得出答案.【詳解】解:∵∠DAC=∠DBC,∠AOD=∠BOC,∴∽,故A不符合題意;∵∽,∴AO:OD=OB:OC,∵∠AOB=∠DOC,∴∽,故B不符合題意;∵∽,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC=∠DBC,∴∠CDB=∠DBC,∴CD=BC;沒有條件可以證明,故選D.【點睛】本題考查了相似三角形的判定與性質(zhì),解題關(guān)鍵在于熟練掌握相似三角形的判定方法①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.7、D【分析】根據(jù)切線的判定在網(wǎng)格中作圖即可得結(jié)論.【詳解】解:如圖,過格點A,B,C畫圓弧,則點B與下列格點連線所得的直線中,能夠與該圓弧相切的格點坐標是(6,2).故選:D.【點睛】本題考查了切線的判定,掌握切線的判定定理是解題的關(guān)鍵.8、D【分析】利用陰影部分的面積等于扇形面積減去的面積即可求解.【詳解】=故選D【點睛】本題主要考查扇形面積和三角形面積,掌握扇形面積公式是解題的關(guān)鍵.9、C【解析】試題分析:由線段AB是⊙O的直徑,弦CD丄AB,根據(jù)垂徑定理的即可求得:,然后由圓周角定理可得∠BOD=2∠CAB=2×20°=40°.故選C.考點:圓周角定理;垂徑定理.10、D【分析】根據(jù)拋物線與y軸交點的位置即可判斷A選項;根據(jù)拋物線與x軸有兩個交點即可判斷B選項;由圖象可知,當x=1時,圖象在x軸的下方可知,故C錯誤;根據(jù)圖象經(jīng)過點兩點,即可得出對稱軸為直線.【詳解】解:A、由圖可知,拋物線交于y軸負半軸,所以c<0,故A錯誤;B、由圖可知,拋物線與x軸有兩個交點,則,故B錯誤;C、由圖象可知,當x=1時,圖象在x軸的下方,則,故C錯誤;D、因為圖象經(jīng)過點兩點,所以拋物線的對稱軸為直線,故D正確;故選:D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).11、A【解析】根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可得答案.【詳解】A、不是中心對稱圖形,故此選項符合題意;B、是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項不符合題意;D、是中心對稱圖形,故此選項不符合題意;故選:A.【點睛】本題考查中心對稱圖形的概念,解題的關(guān)鍵是熟知中心圖形的定義.12、B【分析】求出△ABC的三邊長,再分別求出選項A、B、C、D中各三角形的三邊長,根據(jù)三組對應邊的比相等判定兩個三角形相似,由此得到答案.【詳解】如圖,,AC=2,,A、三邊依次為:,,1,∵,∴A選項中的三角形與不相似;B、三邊依次為:、、1,∵,∴B選項中的三角形與相似;C、三邊依次為:3、、,∵,∴C選項中的三角形與不相似;D、三邊依次為:、、2,∵,∴D選項中的三角形與不相似;故選:B.【點睛】此題考查網(wǎng)格中三角形相似的判定,勾股定理,需根據(jù)勾股定理分別求每個三角形的邊長,判斷對應邊的比是否相等是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)勾股定理求出BD的長,點B旋轉(zhuǎn)所經(jīng)過的路徑應是弧線,根據(jù)公式計算即可.【詳解】如圖,∵,∴,由旋轉(zhuǎn)得:,,,,點B兩次旋轉(zhuǎn)所經(jīng)過的路徑長為=.故答案為:.【點睛】此題考查弧長公式,熟記公式,明確各字母代表的含義并正確代入公式進行計算即可14、(﹣4,6)【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反可得答案.【詳解】點P(4,﹣6)關(guān)于原點對稱的點的坐標是(﹣4,6),故答案為:(﹣4,6).【點睛】本題考查了一點關(guān)于原點對稱的問題,橫縱坐標取相反數(shù)就是對稱點的坐標.15、1【解析】由△ABC與△DEF的相似,它們的相似比是2:3,根據(jù)相似三角形的面積比等于相似比的平方,即可得它們的面積比是4:1,又由△ABC的面積為4,即可求得△DEF的面積.【詳解】∵△ABC與△DEF的相似,它們的相似比是2:3,

∴它們的面積比是4:1,

∵△ABC的面積為4,

∴△DEF的面積為:4×=1.

故答案為:1.【點睛】本題考查的知識點是相似三角形的性質(zhì),解題關(guān)鍵是掌握相似三角形的面積比等于相似比的平方定理.16、1【分析】由角角相等證明△ABC∽△AED,其性質(zhì)求得AB的長為1.【詳解】如圖所示:∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,∴,∴AB=,又∵DE=2,AE=3,BC=6,∴AB==1,故答案為1.【點睛】本題主要考查了相似三角形的判定與性質(zhì)綜合,屬于基礎(chǔ)題型.17、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.18、【分析】連接BC,根據(jù)圓周角定理求出BC是⊙O的直徑,BC=12cm,根據(jù)勾股定理求出AB,再根據(jù)弧長公式求出半徑r.【詳解】連接BC,由題意知∠BAC=90°,∴BC是⊙O的直徑,BC=12cm,∵AB=AC,∴,∴(cm),設(shè)這個圓錐的底面圓的半徑是rcm,∵,∴,∴r=(cm),故答案為:.【點睛】此題考查圓周角定理,弧長公式,勾股定理,連接BC得到BC是圓的直徑是解題的關(guān)鍵.三、解答題(共78分)19、∠C=30°【分析】根據(jù)平行線的性質(zhì)求出∠AOD,根據(jù)圓周角定理解答.【詳解】解:∵OA∥DE,

∴∠AOD=∠D=60°,

由圓周角定理得,∠C=∠AOD=30°【點睛】本題考查的是圓周角定理和平行線的性質(zhì),掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.20、(1)如圖所示,見解析;(2)【分析】(1)利用畫中心對稱圖形的作圖方法直接畫出關(guān)于原點對稱的即可;(2)利用畫旋轉(zhuǎn)圖形的作圖方法直接畫出,并利用扇形公式求出線段掃過圖形的面積.【詳解】解:(1)如圖所示(2)作圖見圖;由題意可知線段掃過圖形的面積為扇形利用扇形公式:.【點睛】本題考查中心對稱圖形以及旋轉(zhuǎn)圖形的作圖,熟練掌握相關(guān)作圖技巧以及利用扇形公式是解題關(guān)鍵.21、1-【解析】利用零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負指數(shù)次冪的性質(zhì)進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負指數(shù)次冪的性質(zhì),熟練掌握性質(zhì)及定義是解題的關(guān)鍵.22、證明見解析.【分析】由四邊形ABCD是平行四邊形,可得AD∥BC,OA=OC,繼而可利用ASA判定△AOE≌△COF,繼而證得OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論